论文部分内容阅读
Mitogen activated protein kinases (MAPK) cascades based on protein phosphorylation play an important role in plant growth and development. In this study, we have identified 15 putative members of the wheat MAPK gene (TaMPK) family through an in silico search of wheat expressed sequence tags (EST) databases based on the presence of amino acid sequence of Arabidopsis and rice MAPKs. Phylogenetic analyses of MAPKs from wheat, rice and Arabidopsis genomes have classified them into seven subgroups (A, B, C, D, E, F, and G). Using the available EST information as a source of expression data, the MAPK family genes from Triticum aestivum were detected in diverse tissues. Further expression analysis of the MAPKs in NCBI EST database revealed that their transcripts were most abundant in callus (20%), followed by leaf (12%) and inflorescence (12%). Most MAPK family genes showed some tissue specificity.
Mitogen activated protein kinases (MAPK) cascades based on protein phosphorylation play an important role in plant growth and development. In this study, we have identified 15 putative members of the wheat MAPK gene (TaMPK) family through an in silico search of wheat expressed sequence tags (EST) databases based on the presence of amino acid sequence of Arabidopsis and rice MAPKs. Phylogenetic analyzes of MAPKs from wheat, rice and Arabidopsis genomes have classified them into seven subgroups (A, B, C, D, E, F, and Using the available EST information as a source of expression data, the MAPK family genes from Triticum aestivum were detected in diverse tissues. Further expression analysis of the MAPKs in NCBI EST database revealed that their transcripts were most abundant in callus (20% ), followed by leaf (12%) and inflorescence (12%). Most MAPK family genes showed some tissue specificity.