论文部分内容阅读
针对建立轮毂无损检测智能化平台的需要,提出一种基于深度学习算法的轮毂缺陷自动分割方法,利用卷积神经网络的结构和径向基函数神经网络的非线性特点,构造一种深度学习网络结构来模拟人类的视觉感知。依据汽车轮毂X射线图像,利用U-Net网络来训练轮毂缺陷分割模型,并在感兴趣区域的基础上模拟人脑层次感知系统,该层次感知系统能识别感兴趣区域的灰度像素,通过深度学习分层网络和卷积神经网络,逐层提取缺陷区域的内在特征,从而实现轮毂缺陷的自动分割。结果表明:本文方法针对复杂轮毂缺陷的识别率达到90%以上,且识别时间开销