论文部分内容阅读
当前素质教育是中小教育的关键,而教育现代化则是关键的关键。中小学数学教育的现代化,主要不是内容的现代化,而是数学思想、方法及教学手段的现代化,加强数学思想方法的教学是基础数学教育现代化的关键,特别是对能力培养这一问题的探讨与摸索,以及社会对数学价值的要求。使我们更进一步地认识到数学思想方法对数学教学的重要性。
1 现实的需要决定数学思想方法对数学教学有着重要的作用
教育目的的需要决定数学思想方法的作用 目前,我国正处在实施素质教育,深化教育改革阶段,由于数学思想与方法的重要作用,使得数学教育在素质教育中具有特殊的地位,数学是思维的体操这是众所周知的,数学思想方法哺育着人养成诚实、正直、严肃认真、踏实细微、机智、顽强等当今时代迎接挑战不可缺的精神,这也是我们普遍感觉到了的。
2 认知的实现,让数学思想方法在数学教学中发挥着重要的作用 学习的认知结构理论告诉我们,数学学习过程,是一个数学认知过程,其实质是一个数学认知结构的发展变化过程,这个过程是通过同化和顺应两种方式实现的,在同化和顺应进行中,数学思想和方法在数学认知结构中发挥着极为重要的作用。
3 认识的规律决定了数学思想方法对数学教学的有着促进作用
掌握了数学思想方法能够使得数学知识更容易理解 心理学认为。“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想和方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即可使新知识能够顺利地纳入到学生已有的认知结构中去。学生学习了数学思想、方法就能够更好地理解和掌握教学内容。
4 数学思想方法对数学教学起着指导作用
用数学思想可以指导基础知识教学,在基础知识教学中培养思想方法。 基础知识的教学中要充分展现知识形成发展过程,揭示其中蕴涵的丰富的数学思想方法。如几何体体积公式的推导体系,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,这些思想方法是灵活运用的完美范例。只有通过展现体积问题解决的思路分析,并同时形成系统的、条理的体积公式的推导线索,才能把这些思想方法明确地呈现在学生的眼前。
面对我们的学生,我们应该根据数学知识的内容、学生的年龄特点分层次地选题合适的数学思想内容,进行渗透和教学。这就需要我们教师全面的熟悉教材,对教材中所反映的数学思想要有明确的认识,对教材内容从思想方法的角度作认真的分析,按照各个年级学生的年龄特征,知识掌握的程度,理解能力和可接受性由浅入深、由易到难分层次地贯彻数学思想的教学。
1 现实的需要决定数学思想方法对数学教学有着重要的作用
教育目的的需要决定数学思想方法的作用 目前,我国正处在实施素质教育,深化教育改革阶段,由于数学思想与方法的重要作用,使得数学教育在素质教育中具有特殊的地位,数学是思维的体操这是众所周知的,数学思想方法哺育着人养成诚实、正直、严肃认真、踏实细微、机智、顽强等当今时代迎接挑战不可缺的精神,这也是我们普遍感觉到了的。
2 认知的实现,让数学思想方法在数学教学中发挥着重要的作用 学习的认知结构理论告诉我们,数学学习过程,是一个数学认知过程,其实质是一个数学认知结构的发展变化过程,这个过程是通过同化和顺应两种方式实现的,在同化和顺应进行中,数学思想和方法在数学认知结构中发挥着极为重要的作用。
3 认识的规律决定了数学思想方法对数学教学的有着促进作用
掌握了数学思想方法能够使得数学知识更容易理解 心理学认为。“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想和方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即可使新知识能够顺利地纳入到学生已有的认知结构中去。学生学习了数学思想、方法就能够更好地理解和掌握教学内容。
4 数学思想方法对数学教学起着指导作用
用数学思想可以指导基础知识教学,在基础知识教学中培养思想方法。 基础知识的教学中要充分展现知识形成发展过程,揭示其中蕴涵的丰富的数学思想方法。如几何体体积公式的推导体系,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,这些思想方法是灵活运用的完美范例。只有通过展现体积问题解决的思路分析,并同时形成系统的、条理的体积公式的推导线索,才能把这些思想方法明确地呈现在学生的眼前。
面对我们的学生,我们应该根据数学知识的内容、学生的年龄特点分层次地选题合适的数学思想内容,进行渗透和教学。这就需要我们教师全面的熟悉教材,对教材中所反映的数学思想要有明确的认识,对教材内容从思想方法的角度作认真的分析,按照各个年级学生的年龄特征,知识掌握的程度,理解能力和可接受性由浅入深、由易到难分层次地贯彻数学思想的教学。