论文部分内容阅读
粗糙模糊K-means(RFKM)聚类综合利用了粗糙集和模糊集的优势互补,是一种有效的聚类分析算法,但现有的RFKM算法大多只考虑了簇内样本空间分布的模糊度量,忽略了类簇规模的不均衡特征对聚类结果的影响,对类簇规模不均衡的数据集进行聚类分析时,适应性较差.为了能够从算法层面直接对类簇规模不均衡的数据集有效地进行聚类分析,引入了对类簇规模不均衡程度的自适应度量,并提出了一种基于类簇规模不均衡度量的粗糙模糊K-means聚类算法.通过人工数据集和UCI标准数据集验证了算法的有效性.