论文部分内容阅读
[摘要]:风能作为一种清洁能源,正以极快的速度发展。由于风力发电机组通常处于野外,环境条件恶劣,容易出现故障,维修起来耗费大量的人力物力。本文首先介绍了国内外风力发电的发展现状,其次简要描述了風力发电机组的基本结构, 然后针对风力发电机组主要部件的常见故障原因和处理对策进行了分析与研究,目的是为了保证风力发电机组安全运行,减 少故障发生率,提高风力发电机组的运行可靠性。
[关键词]:风力发电机组 故障机理 风能利用
中图分类号:TM31 文献标识码:TM 文章编号:1009-914X(2012)26- 0622 -01
风能是一种干净的、储量极为丰富的可再生能源,它不会随着其本身的转化和利用而减少。自20世纪70年代末以来,随着世界各国对环境保护、能源短缺及节能等问题的关注,大规模利用风力发电来减少空气污染、减少有害气体的排放量。中国西北、华北北部、东北及东南沿海地区有丰富的风能资源。根据中国对能源及环境保护可持续发展计划的实施,随着中国风力发电技术的更新及风电场的不断扩大,到‘2015年,全国总装机规模将达到1×107 kW。
风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴藏量巨大,全球风能资源总量约为2.74×109兆瓦,其中可利用的风能为2×107兆瓦。中国风能储量很大、分布面广,开发利用潜力巨大。
风机常见故障机理分析
风力发电机齿轮箱的常见故障有齿轮损伤、轴承损坏、断轴和渗漏油、油温高等。
一、齿轮损伤
齿轮损伤的影响因素很多,包括选材、设计计算、加工、热处理、安装调试、润滑和使用维护等。常见的齿轮损伤有齿面损伤和轮齿折断两类。
(一)轮齿折断(断齿)
断齿常由细微裂纹逐步扩展而成。根据裂纹扩展的情况和断齿原因,断齿可分为过载折断(包括冲击折断)、疲劳折断以及随机断裂等。 过载折断总是由于作用在轮齿上的应力超过其极限应力,导致裂纹迅速扩展,常见的原因有突然冲击超载、轴承损坏、轴弯曲或较大硬物挤入啮合区等。断齿断口有呈放射状花样的裂纹扩展区,有时 断口处有平整的塑性变形,断口副常可拼合。仔细检查可看到材质的缺陷,齿面精度太差,轮齿根部未作精细处理等。在设计中应采取必要的措施,充分考虑预防过载因素。安装时防止箱体变形,防止硬质异物进入箱体内等等。 疲劳折断发生的根本原因是轮齿在过高的交变应力重复作用下,从危险截面(如齿根)的疲劳源起始的疲劳裂纹不断扩展,使轮齿剩余截面上的应力超过其极限应力,造成瞬时折断。在疲劳折断的发源处,是贝状纹扩展的出发点并向外辐射。产生的原因是设计载荷估计不足,材料选用不当,齿轮精度过低,热处理裂纹,磨削烧伤,齿根应力集中等等。故在设计时要充分考虑传动的动载荷谱,优选齿轮参数,正确选用材料和齿轮精度,充分保证加工精度消除应力集中集中因素等等。 随机断裂的原因通常是材料缺陷,点蚀、剥落或其他应力集中造成的局部应力过大,或较大的硬质异物落入啮合区引起。
(二)齿面疲劳
齿面疲劳是在过大的接触剪应力和应力循环次数作用下,轮齿表面或其表层下面产生疲劳裂纹并进一步扩展而造成的齿面损伤,其表现形式有早期点蚀、破坏性点蚀、齿面剥落、和表面压碎等。特别是破坏性点蚀,常在齿轮啮合线部位出现,并且不断扩展,使齿面严重损伤,磨损加大,最终导致断齿失效。正确进行齿轮强度设计,选择好材质,保证热处理质量,选择合适的精度配合,提高安装精度,改善润滑条件等,是解决齿面疲劳的根本措施。
(三)胶合
胶合是相啮合齿面在啮合处的边界膜受到破坏,导致接触齿面金属融焊而撕落齿面上的金属的现象,很可能是由于润滑条件不好或有干涉引起,适当改善润滑条件和及时排除干涉起因,调整传动件的参数,清除局部载荷集中,可减轻或消除胶合现象。
二、 轴承损坏
轴承是齿轮箱中最为重要的零件,其失效常常会引起齿轮箱灾难性的破坏。轴承在运转过程中,套圈与滚动体表面之间经受交变负荷的反复作用,由于安装、润滑、维护等方面的原因,而产生点蚀、裂纹、表面剥落等缺陷,使轴承失效,从而使齿轮副和箱体产生损坏。据统计,在影响轴承失效的众多因素中,属于安装方面的原因占16%,属于污染方面的原因也占16%,而属于润滑和疲劳方面的原因各占34%。使用中70%以上的轴承达不到预定寿命。因而,重视轴承的设计选型,充分保证润滑条件,按照规范进行安装调试,加强对轴承运转的监控是非常必要的。通常在齿轮箱上设置了轴承温控报警点,对轴承异常高温现象进行监控,同一箱体上不同轴承之间的温差一般也不超过15゜C,要随时随地检查润滑油的变化,发现异常立即停机处理。
三、 断轴
断轴也是齿轮箱常见的重大故障之一。究其原因是轴在制造中没有消除应力集中因素,在过载或交变应力的作用下,超出了材料的疲劳极限所致。因而对轴上易产生的应力集中因素要给予高度重视,特别是在不同轴径过渡区要有圆滑的圆弧连接,此处的光洁度要求较高,也不允许有切削刀具刃尖的痕迹。设计时,轴的强度应足够,轴上的键槽、花键等结构也不能过分降低轴的强度。保证相关零件的刚度,防止轴的变形,也是提高轴的可靠性的相应措施。
总结
目前国内外风力发电正在以极快的速度发展, 如何保证风力发电机组安全可靠运行,以成为紧迫 的任务。本文在描述了风力发电机组的基本构成的 基础上,针对风力发电机组主要部件(叶片、齿轮 箱、发电机和塔架)的常见故障原因和处理对策进 行了分析与研究,目的是为了保证风力发电机组安全运行,减少故障发生率,提高风力发电机组的运行可靠性。根圆角半径、表面强化等方法来提高轮齿的弯曲强度,避免折断。发电机常见的故障是油温过高,如果持续长时 间的话,会造成发电机损坏。油温过高可能是由于 短时间内出力过高,导致热量散发不出去;也有可 能是由于油循环系统堵塞,流通不畅;还有就是油 变质了。可以通过安装温度传感器,及时监测油温, 防止出现意外。
参考文献:
[1]关立山,世界风力发电现状及展望,全球科技经济展望,2004,223(7):51-55
[2]倪受元,风力发电讲座第一讲:风力机的类型与结构, 太阳能,2000年第3期
[3]刘虎平、廖明夫,失速型和变距型风力机的性能比较, 机械设计与制造,2005年第8期:42—43
[4]乔印虎风力发电机叶片振动研究与保护:[硕士学位论 文],新疆大学,2006
作者简介:
1、杨国宁,男,汉族,1991.07.08, 山东省菏泽市,现就读于辽宁工程技术大学机械工程学院热能与动力工程系09—1级。
2、张祥波,男 ,汉族,1991.05.04,安徽省蚌埠市,现就读于辽宁工程技术大学机械工程学院工业设计系09—1级。
3、张家宁,男,汉族,1993.01.08,河南省永城市,现就读于辽宁工程技术大学机械工程学院热能与动力工程系11—3级。
[关键词]:风力发电机组 故障机理 风能利用
中图分类号:TM31 文献标识码:TM 文章编号:1009-914X(2012)26- 0622 -01
风能是一种干净的、储量极为丰富的可再生能源,它不会随着其本身的转化和利用而减少。自20世纪70年代末以来,随着世界各国对环境保护、能源短缺及节能等问题的关注,大规模利用风力发电来减少空气污染、减少有害气体的排放量。中国西北、华北北部、东北及东南沿海地区有丰富的风能资源。根据中国对能源及环境保护可持续发展计划的实施,随着中国风力发电技术的更新及风电场的不断扩大,到‘2015年,全国总装机规模将达到1×107 kW。
风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴藏量巨大,全球风能资源总量约为2.74×109兆瓦,其中可利用的风能为2×107兆瓦。中国风能储量很大、分布面广,开发利用潜力巨大。
风机常见故障机理分析
风力发电机齿轮箱的常见故障有齿轮损伤、轴承损坏、断轴和渗漏油、油温高等。
一、齿轮损伤
齿轮损伤的影响因素很多,包括选材、设计计算、加工、热处理、安装调试、润滑和使用维护等。常见的齿轮损伤有齿面损伤和轮齿折断两类。
(一)轮齿折断(断齿)
断齿常由细微裂纹逐步扩展而成。根据裂纹扩展的情况和断齿原因,断齿可分为过载折断(包括冲击折断)、疲劳折断以及随机断裂等。 过载折断总是由于作用在轮齿上的应力超过其极限应力,导致裂纹迅速扩展,常见的原因有突然冲击超载、轴承损坏、轴弯曲或较大硬物挤入啮合区等。断齿断口有呈放射状花样的裂纹扩展区,有时 断口处有平整的塑性变形,断口副常可拼合。仔细检查可看到材质的缺陷,齿面精度太差,轮齿根部未作精细处理等。在设计中应采取必要的措施,充分考虑预防过载因素。安装时防止箱体变形,防止硬质异物进入箱体内等等。 疲劳折断发生的根本原因是轮齿在过高的交变应力重复作用下,从危险截面(如齿根)的疲劳源起始的疲劳裂纹不断扩展,使轮齿剩余截面上的应力超过其极限应力,造成瞬时折断。在疲劳折断的发源处,是贝状纹扩展的出发点并向外辐射。产生的原因是设计载荷估计不足,材料选用不当,齿轮精度过低,热处理裂纹,磨削烧伤,齿根应力集中等等。故在设计时要充分考虑传动的动载荷谱,优选齿轮参数,正确选用材料和齿轮精度,充分保证加工精度消除应力集中集中因素等等。 随机断裂的原因通常是材料缺陷,点蚀、剥落或其他应力集中造成的局部应力过大,或较大的硬质异物落入啮合区引起。
(二)齿面疲劳
齿面疲劳是在过大的接触剪应力和应力循环次数作用下,轮齿表面或其表层下面产生疲劳裂纹并进一步扩展而造成的齿面损伤,其表现形式有早期点蚀、破坏性点蚀、齿面剥落、和表面压碎等。特别是破坏性点蚀,常在齿轮啮合线部位出现,并且不断扩展,使齿面严重损伤,磨损加大,最终导致断齿失效。正确进行齿轮强度设计,选择好材质,保证热处理质量,选择合适的精度配合,提高安装精度,改善润滑条件等,是解决齿面疲劳的根本措施。
(三)胶合
胶合是相啮合齿面在啮合处的边界膜受到破坏,导致接触齿面金属融焊而撕落齿面上的金属的现象,很可能是由于润滑条件不好或有干涉引起,适当改善润滑条件和及时排除干涉起因,调整传动件的参数,清除局部载荷集中,可减轻或消除胶合现象。
二、 轴承损坏
轴承是齿轮箱中最为重要的零件,其失效常常会引起齿轮箱灾难性的破坏。轴承在运转过程中,套圈与滚动体表面之间经受交变负荷的反复作用,由于安装、润滑、维护等方面的原因,而产生点蚀、裂纹、表面剥落等缺陷,使轴承失效,从而使齿轮副和箱体产生损坏。据统计,在影响轴承失效的众多因素中,属于安装方面的原因占16%,属于污染方面的原因也占16%,而属于润滑和疲劳方面的原因各占34%。使用中70%以上的轴承达不到预定寿命。因而,重视轴承的设计选型,充分保证润滑条件,按照规范进行安装调试,加强对轴承运转的监控是非常必要的。通常在齿轮箱上设置了轴承温控报警点,对轴承异常高温现象进行监控,同一箱体上不同轴承之间的温差一般也不超过15゜C,要随时随地检查润滑油的变化,发现异常立即停机处理。
三、 断轴
断轴也是齿轮箱常见的重大故障之一。究其原因是轴在制造中没有消除应力集中因素,在过载或交变应力的作用下,超出了材料的疲劳极限所致。因而对轴上易产生的应力集中因素要给予高度重视,特别是在不同轴径过渡区要有圆滑的圆弧连接,此处的光洁度要求较高,也不允许有切削刀具刃尖的痕迹。设计时,轴的强度应足够,轴上的键槽、花键等结构也不能过分降低轴的强度。保证相关零件的刚度,防止轴的变形,也是提高轴的可靠性的相应措施。
总结
目前国内外风力发电正在以极快的速度发展, 如何保证风力发电机组安全可靠运行,以成为紧迫 的任务。本文在描述了风力发电机组的基本构成的 基础上,针对风力发电机组主要部件(叶片、齿轮 箱、发电机和塔架)的常见故障原因和处理对策进 行了分析与研究,目的是为了保证风力发电机组安全运行,减少故障发生率,提高风力发电机组的运行可靠性。根圆角半径、表面强化等方法来提高轮齿的弯曲强度,避免折断。发电机常见的故障是油温过高,如果持续长时 间的话,会造成发电机损坏。油温过高可能是由于 短时间内出力过高,导致热量散发不出去;也有可 能是由于油循环系统堵塞,流通不畅;还有就是油 变质了。可以通过安装温度传感器,及时监测油温, 防止出现意外。
参考文献:
[1]关立山,世界风力发电现状及展望,全球科技经济展望,2004,223(7):51-55
[2]倪受元,风力发电讲座第一讲:风力机的类型与结构, 太阳能,2000年第3期
[3]刘虎平、廖明夫,失速型和变距型风力机的性能比较, 机械设计与制造,2005年第8期:42—43
[4]乔印虎风力发电机叶片振动研究与保护:[硕士学位论 文],新疆大学,2006
作者简介:
1、杨国宁,男,汉族,1991.07.08, 山东省菏泽市,现就读于辽宁工程技术大学机械工程学院热能与动力工程系09—1级。
2、张祥波,男 ,汉族,1991.05.04,安徽省蚌埠市,现就读于辽宁工程技术大学机械工程学院工业设计系09—1级。
3、张家宁,男,汉族,1993.01.08,河南省永城市,现就读于辽宁工程技术大学机械工程学院热能与动力工程系11—3级。