论文部分内容阅读
考查了形如F=αФ(β/α),Ф(s)=e^p(s)的一类(α,β)-度量成为Einstein度量的充分必要条件。这里p(s)是关于s的k(k≥1)次多项式,α是一个黎曼度量,β是一个1-形式。利用已知正确的黎曼曲率和Ricci曲率值,给出Einstein(α,β)-度量的局部等价方程。结合Maple程序进行一系列复杂计算,利用多项式的相关代数知识对该等效方程进行分析比较,得到了关键结论。主要证明了这类度量是爱因斯坦的,当且仅当它们是Ricci平坦的。