论文部分内容阅读
利用EQ1^rot非协调有限元对Allen-Cahn方程建立一个关于时间有二阶精度的二重网格算法.借助于单元的特殊性质、导数转移技巧和插值后处理技术,在离散的H^1模意义下得到了O(h^2+H^4+τ^2)阶的超逼近和超收敛结果.给出了数值算例以验证理论的正确性与算法的高效性.这里h、H和τ分别表示细网格、粗网格的剖分尺度和时间步长.