关于一类非多项式平面微分系统的极限环及分支问题

来源 :应用数学与计算数学学报 | 被引量 : 0次 | 上传用户:kangshuangming
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
旨在讨论一类非多项式平面微分系统.通过使用Dulac准则和Bendixson准则获得极限环不存在性的充分条件,引入广义Liénard系统理论以研究极限环的存在性及稳定性,应用Hopf分岔理论证明自原点分岔出极限环的充分条件.此外,给出一个范例以验证分析和结果的有效性.
其他文献
针对一个领导者的主从博弈问题,研究轻微利他平衡点的存在性问题.首先,基于非合作博弈Nash均衡的概念,给出了主从博弈轻微利他Nash均衡的定义;然后,应用非线性问题稳定性理论
运用EM算法,对含有缺失数据的AR(p)模型进行参数估计,通过最大似然准则就非左端缺失的情况进行插补.最后,用蒙特卡洛方法给出实验分析,表明如下结果:(i)误差与AR模型的阶数正相关,
研究了一类含双参数的非线性高阶微分方程的奇摄动问题.运用合成展开法构造了问题的形式渐近解,并运用微分不等式理论证明了原问题解的存在性及所得形式渐近解的一致有效性.
利用重合度理论和一些分析技巧,得到一类二阶时滞Dumng微分方程的2kT周期解,通过对该微分方程的一系列周期解取极限获得同宿解的存在性.同时,β(t)是可变号的.
摘要给出了一种Chebyshev距离下的常重复合码的构造,并在其基础上讨论了它的译码算法和优化处理.考虑了Chebyshev距离下的界及其改进.研究了具有Chebyshev距离和Hamming距离
研究了一类变系数椭圆方程的柯西问题,这类问题出现在很多实际问题领域.由于问题的不适定性,不可能通过经典的数值方法来求解上述问题,必须引入正则化手段.采用了一种修正吉
引入了星体的p-混合弦长积分的概念,建立了关于星体的p-混合弦长积分的Minkowski不等式、循环不等式和Brunn-Minkowski不等式.
对一类非线性时滞反应扩散方程的有限差分方程组建立了一类高阶单调迭代方法.这类方法给出了一个有效的线性迭代算法.迭代序列单调收敛于方程组的唯一解,并且序列的单调性使得每
讨论目标函数为最小完工时间之和的两阶段混合流水作业问题,第一阶段为批处理机且工件在其上的加工时间相等,第二阶段为同型机且工件在其上的加工时间任意.指出该问题为强NP—ha
提出了求解多维的Schrodinger特征值问题的Legendre-Galerkin-Chebyshev配置法(LGCC).LGCC方法是Legendre-Galerkin方法和Chebyshev配置法的耦合,便于处理变系数和非线性项且保