论文部分内容阅读
为了提高聚类结果和允许在结果中进行选择,将本体语义与文档聚类相结合,在文档处理过程中提出了基于WordNet的新的文档聚类算法.首先通过tf-idf对文档进行了表示,为了将WordNet的概念出现在文档集合中,通过新的实体对每一个单词向量进行扩展.其次,运用特征提取算法对文档进行特征提取.最后提出了本体集合聚类算法用以提高文本的聚类效果.实验构建在Reuters20新闻组的数据基础上,应用互信息作为试验结果的比较.结果表明:与已经存在的一些算法如MNB.CLU—TO,co—clustering等相比,基于