论文部分内容阅读
为解决传统比例-积分-微分(PID)控制器在实际工业过程中难以满足控制要求的问题,将二次型性能指标引入到神经元的加权系数的调整中,并利用自学习功能构成了神经元自适应PID控制器。利用混沌优化算法和最速下降法结合起来的混合优化算法,对神经元自适应PID控制器的学习速率和神经元比例系数进行了优化。仿真实验和结果分析表明:该混合优化神经元自适应PID控制器具有很好的动态和静态性能,系统的稳定性和鲁棒性增强,学习参数选择的盲目性和对经验的高度依赖性降低。