论文部分内容阅读
单张图片和监控视频中的人群计数问题在近年来受到了越来越多的关注。尺度的变化和人群遮挡等问题,导致人群计数是一项十分具有挑战性的任务,但是深度卷积神经网络被证明能有效地解决这一问题。文中提出了一种单列多尺度的卷积神经网络,该网络提供了一种数据驱动的深度学习方法,能够理解各种不同的场景,并能进行精确的计数估计。该网络模型主要由作为二维特征提取的前端与中端,和用来还原密度图的后端组成。其中,使用堆叠池代替最大池化层,在不引入额外参数的前提下增加了模型的尺度不变性。网络模型前端采用部分VGG-16结构;中端