论文部分内容阅读
提出了一种考虑标记间依赖关系的多标记分类算法.首先依据RAk EL算法将标记集合划分为若干子集,然后在子集内部应用概率分类器链算法训练分类器.这样不仅充分考虑了标记间的依赖关系,而且对标记进行分组,从而提高了分类的性能.在5个数据集上与其他经典算法进行了对比实验,结果表明本文所提算法可显著提高分类性能.