【摘 要】
:
没有凸锥的闭性和点性假设,该文考虑由一般凸锥生成的单调Minkowski泛函并研究其性质.由此,在偏序局部凸空间的框架下,通过利用单调连续Minkowski泛函和单调连续半范,该文分
【机 构】
:
上海电力学院数理学院,苏州大学数学科学学院
【基金项目】
:
国家自然科学基金(10871141)资助
论文部分内容阅读
没有凸锥的闭性和点性假设,该文考虑由一般凸锥生成的单调Minkowski泛函并研究其性质.由此,在偏序局部凸空间的框架下,通过利用单调连续Minkowski泛函和单调连续半范,该文分别获得了一般集合及锥有界集合的弱有效点的标量化.利用此弱有效性的标量化,该文分别推导出一般集合及锥有界集合的Henig真有效点的标量化.进而,当序锥具备有界基时,该文获得局部凸空间中超有效性的一些标量化结果.最后,该文给出Henig真有效性和超有效性的稠密性结果.这些结果推广并改进了有关的已知结果.
其他文献
证明每个F^*空间(即满足第一可数公理的Hausdorff拓扑向量空间)可借助于它的“标准生成伪范数族”来表征,利用标准生成伪范数族P,在F^*空间中引入P-有界集、P-半有界集和P-无界集
由江苏省里下河地区农科所(邮码:225002,电话:0514-7302183)顾克礼副研究员和扬州大学农学院张洪程教授主持研制的超高
该文在偏序G-度量空间的框架下,引入了一类新的压缩条件,证明了几个新的偶合不动点的定理,得到的结果在很大程度上改进和发展了已有文献的相关结果.
利用奇摄动理论证明了一类最优控制问题中内部转移层解的存在性,不但给出了内部转移层存在的条件而且确定了转移点的位置.同时利用边界层函数法基础上发展起来的直接展开法构造
借助整函数插值研究由函数的广义平移所生成的Mercer核矩阵及其逆矩阵权范数的上、下界估计问题,将定义在无限区间上整函数的广义平移所生成的Mercer核矩阵权范数界的估计转
在Asplund空间中,研究了非凸向量均衡问题近似解的最优性条件.借助Mordukhovich次可微概念,在没有任何凸性条件下获得了向量均衡问题εe-拟弱有效解,εe-拟Henig有效解,εe-