论文部分内容阅读
[摘 要]配电自动化指的是把计算机技术、光纤通信技术和电子信息技术等在电力系统中进行合理应用,提高配电效率,对故障进行及时排除,从而使配电网络的安全性和可靠性得到提升的技术。配电自动化系统的应用,能够使供电质量大大提高,降低电能消耗量,并且延长电力设备的使用寿命,节约电力成本。因此,电力部门要重视对配电自动化系统的应用,保证供电的可靠性,提高人们的生活质量。本文分析了配电自动化实用化关键技术,并且探讨了配电自动化系统的进展和趋势。
[关键词]配电自动化;实用化关键技术;进展;
中图分类号:TM76 文献标识码:A 文章编号:1009-914X(2015)48-0386-01
随着我国国民经济的不断发展,城市的现代化进程逐渐加快,这就使得我国城市的电力负荷越来越严重。近几年,随着国内配电自动化系统不断的建立,相关人员逐渐提出了配电自动化实用化、功能规范以及系统性能测试的发展建议。
一、配电自动化实用化关键技术
1.继电保护与配电自动化协调配合
(1)继电保护与配电自动化协调配合,既能发挥继电保护切除故障速度快和不会造成健全区域停电的优点,又能利用配电自动化来弥补配电网继电保护选择性的不足。许多供电企业将变电站10kv出线开关的速断保护设置为瞬时速断保护,担心若设置延时后会影响主变压器安全运行或需要修改上级保护配置。在上述配置下,馈线继电保护很难配合,任何一处(包括支线和用户)故障都可能导致变电站10kv出线开关保护动作跳闸,造成全馈线失压,停电用户数较多。
(2)实际上,变压器、断路器、负荷开关、隔离开关、线路以及电流互感器在设计选型时是根据后备保护(即变电站变压器低压侧开关的过流保护)的动作时间来进行热稳定校验的,因此,变电站10kv出线开关的速断保护在变压器低压侧开关的过流保护的动作时间范围以内适当设置延时,不仅能与支线断路器和用户断路器实现多级级差保护配合,而且不会对设备的热稳定造成影响,并且不必改变上级保护的定值。为了减少变电站10kv母线近端短路故障的影响,可以同时配备低电压瞬时保护或根据母线电压阈值整定瞬时速断保护电流定值。例如:馈线主干线开关可以全部采用负荷开关并配备光纤通道、三遥终端;支线开关采用带本地保护断路器并配备GPRS通道、一遥终端。支线断路器与变电站10kv出线断路器实现两级级差配合,动作时间分别为:支线断路器0s、变电站10kv出线开关200-300ms、变电站变压器低压侧开关500-600ms(若要考虑母线分段开关的配合,则母线分段开关500-600ms、变电站变压器低压侧开关700-900ms)。
2.中国配电网与先进国家相比最大的差距之一就是设备利用率偏低
为了满足N-1准则,“手拉手”架空线路和单环或双环状电缆线路最大只能具有50%的负载率。多分段多联络、多供一备、互为备用和4×6等模式化接线方式有助于有效提高配电设备利用率,但是必须在故障处理过程中采取相应的模式化处理步骤才能得到发挥。
(1)对于多分段多联络配电网。若主干线故障,则由变电站出线断路器跳闸切断故障电流,并由配电自动化系统根据故障指示器或人工查线确定故障位置,然后跳开故障位置两侧相邻开关隔离故障。若故障未处于变电站出线开关的相邻区域,则合变电站出线开关以恢复对故障位置上游健全区域的供电,若故障位置下游存在需要恢复的健全区域,则跳开故障位置下游健全区域的分段开关,将故障位置下游的健全区域分段,然后分别合上各段对应的联络开关,使得每个备用电源仅恢复其中一段线路的供电。若N分段N联络配电网中的某一个电源点发生故障,则直接跳开该电源所带线路的变电站出线开关将线路隔离,然后跳开线路上的全部分段开关将线路分为N 段,再合上各馈线段对应的联络开关,分别由每个备用电源恢复其中一段线路的供电。若是架空线路,还可以配以重合闸机制以区分永久故障和瞬时性故障。
(2)对于多供一备电缆配电网。主干线发生故障后由变电站出线断路器跳闸切断故障电流,并由配电自动化系统根据故障指示器或人工查线确定故障位置,然后跳开故障位置两侧相邻开关隔离故障。若故障未处于变电站出线开关的相邻区域,则合变电站出线开关以恢复对故障位置上游健全区域的供电,若故障位置下游存在需要恢复的健全区域,则一律选择由专用备用电缆恢复供电。若多供一备电缆配电网中的某一个正常供电的电源发生故障,则直接跳开该电源所带线路的变电站出线开关将线路隔离,之后合上线路末端联络开关,由专用备用电缆恢复对整条线路的供电。采取上述故障处理措施后,才能发挥出多分段多联络、多供一备等模式化接线配电网的优势,例如2分段2联络配电网最大利用率达到67%、3供1备配电网最大利用率达到75%。
3.借助配电自动化提高配电网应急能力
目前配电自动化系统的故障处理策略,都是针对配电网发生馈线故障的情形。但是在一些情况下有时还会发生造成一条甚至多条10kv 母线失压这类影响较大的故障,例如自然灾害(如冰灾、雪灾、地震等)造成输电线路倒塔、外力破坏或输电线路故障、检修等。在上述情况下,有时在高压侧不能确保全部失压母线恢复供电,就会造成配电网大范围长时间停电。尽管造成10kv母线失压的故障发生概率较小,但其造成大面积停电的危害极大。随着电网的建设与改造,配电网的电源点、网架结构以及分段和联络趋于合理,使得通过中压配电网大规模地转移负荷成为可能,配电自动化的实施,使得大批量开关的操作能够在很短的时间内完成,因此,实现紧急状态下配电网大面积断电快速恢复具有可行性。在紧急状态下配电网大面积断电快速恢复理论研究与实践方面,已经取得了许多研究成果,将这些成果应用到配电自动化系统中,将能有效提高配电网应急能力。
二、进展和趋势
1.智能分布式FA。如今,科学技术不断进步,我国的电力改革进程也在不断加快,电力企业所颁布的改革方案不仅能够开放配电环节,而且推动了分散发电装置的应用。在改革的影响下,配电网能够根据当地的实际情况确定能源解决方案,从而使线路损耗大大降低,能量的转换效率相应提高。FA体系是在多智能化基础上发展而来的智能体系,利用它能够实现区域协调器和智能体系的一致性。在进行配电自动化系统主站协调服务器的设置工作时,要将拓扑结构的变化和配电网的运行方式考虑在内,实现智能体系的规范性,保证通信的畅通性。
2.信息化平台背景下的配电实时信息引擎机制。在电力企业信息一体化集成系统中,配电管理系统、配电自动化以及配电图资地理系统是系统的重要组成部分,而且,它们之间存在着紧密联系,并不是相互独立的。配电自动化系统在以后的发展中,要建立和完善规范的管理体系,提高管理的质量和水平; 要实现信息管理系统和配电自动化的结合,实现系统集成化和信息一体化; 要选择科学的平台,提高配电自动化系统的安全性和可靠性。
随着经济的迅速发展和科学技术的不断进步,如何提高供电质量成为电力企业普遍关注的问题,配电自动化系统对于提高供电质量、保障供电安全起着重要作用,然而,在配电自动化系统的应用过程中,依然存在着一系列的问题。因此,电力企业要认识到配电自动化系统的重要作用,了解系统的关键技术和发展趋势,采取合理措施提高配电自动化系统应用水平,保证供电质量。
参考文献
[1]麦宁杰.配电自动化关键技术及其发展探讨[J].机电信息,2014(3).
[2]李伟波.配电自动化实用化关键技术及其进展[J].科技与企业,2013(21)
[关键词]配电自动化;实用化关键技术;进展;
中图分类号:TM76 文献标识码:A 文章编号:1009-914X(2015)48-0386-01
随着我国国民经济的不断发展,城市的现代化进程逐渐加快,这就使得我国城市的电力负荷越来越严重。近几年,随着国内配电自动化系统不断的建立,相关人员逐渐提出了配电自动化实用化、功能规范以及系统性能测试的发展建议。
一、配电自动化实用化关键技术
1.继电保护与配电自动化协调配合
(1)继电保护与配电自动化协调配合,既能发挥继电保护切除故障速度快和不会造成健全区域停电的优点,又能利用配电自动化来弥补配电网继电保护选择性的不足。许多供电企业将变电站10kv出线开关的速断保护设置为瞬时速断保护,担心若设置延时后会影响主变压器安全运行或需要修改上级保护配置。在上述配置下,馈线继电保护很难配合,任何一处(包括支线和用户)故障都可能导致变电站10kv出线开关保护动作跳闸,造成全馈线失压,停电用户数较多。
(2)实际上,变压器、断路器、负荷开关、隔离开关、线路以及电流互感器在设计选型时是根据后备保护(即变电站变压器低压侧开关的过流保护)的动作时间来进行热稳定校验的,因此,变电站10kv出线开关的速断保护在变压器低压侧开关的过流保护的动作时间范围以内适当设置延时,不仅能与支线断路器和用户断路器实现多级级差保护配合,而且不会对设备的热稳定造成影响,并且不必改变上级保护的定值。为了减少变电站10kv母线近端短路故障的影响,可以同时配备低电压瞬时保护或根据母线电压阈值整定瞬时速断保护电流定值。例如:馈线主干线开关可以全部采用负荷开关并配备光纤通道、三遥终端;支线开关采用带本地保护断路器并配备GPRS通道、一遥终端。支线断路器与变电站10kv出线断路器实现两级级差配合,动作时间分别为:支线断路器0s、变电站10kv出线开关200-300ms、变电站变压器低压侧开关500-600ms(若要考虑母线分段开关的配合,则母线分段开关500-600ms、变电站变压器低压侧开关700-900ms)。
2.中国配电网与先进国家相比最大的差距之一就是设备利用率偏低
为了满足N-1准则,“手拉手”架空线路和单环或双环状电缆线路最大只能具有50%的负载率。多分段多联络、多供一备、互为备用和4×6等模式化接线方式有助于有效提高配电设备利用率,但是必须在故障处理过程中采取相应的模式化处理步骤才能得到发挥。
(1)对于多分段多联络配电网。若主干线故障,则由变电站出线断路器跳闸切断故障电流,并由配电自动化系统根据故障指示器或人工查线确定故障位置,然后跳开故障位置两侧相邻开关隔离故障。若故障未处于变电站出线开关的相邻区域,则合变电站出线开关以恢复对故障位置上游健全区域的供电,若故障位置下游存在需要恢复的健全区域,则跳开故障位置下游健全区域的分段开关,将故障位置下游的健全区域分段,然后分别合上各段对应的联络开关,使得每个备用电源仅恢复其中一段线路的供电。若N分段N联络配电网中的某一个电源点发生故障,则直接跳开该电源所带线路的变电站出线开关将线路隔离,然后跳开线路上的全部分段开关将线路分为N 段,再合上各馈线段对应的联络开关,分别由每个备用电源恢复其中一段线路的供电。若是架空线路,还可以配以重合闸机制以区分永久故障和瞬时性故障。
(2)对于多供一备电缆配电网。主干线发生故障后由变电站出线断路器跳闸切断故障电流,并由配电自动化系统根据故障指示器或人工查线确定故障位置,然后跳开故障位置两侧相邻开关隔离故障。若故障未处于变电站出线开关的相邻区域,则合变电站出线开关以恢复对故障位置上游健全区域的供电,若故障位置下游存在需要恢复的健全区域,则一律选择由专用备用电缆恢复供电。若多供一备电缆配电网中的某一个正常供电的电源发生故障,则直接跳开该电源所带线路的变电站出线开关将线路隔离,之后合上线路末端联络开关,由专用备用电缆恢复对整条线路的供电。采取上述故障处理措施后,才能发挥出多分段多联络、多供一备等模式化接线配电网的优势,例如2分段2联络配电网最大利用率达到67%、3供1备配电网最大利用率达到75%。
3.借助配电自动化提高配电网应急能力
目前配电自动化系统的故障处理策略,都是针对配电网发生馈线故障的情形。但是在一些情况下有时还会发生造成一条甚至多条10kv 母线失压这类影响较大的故障,例如自然灾害(如冰灾、雪灾、地震等)造成输电线路倒塔、外力破坏或输电线路故障、检修等。在上述情况下,有时在高压侧不能确保全部失压母线恢复供电,就会造成配电网大范围长时间停电。尽管造成10kv母线失压的故障发生概率较小,但其造成大面积停电的危害极大。随着电网的建设与改造,配电网的电源点、网架结构以及分段和联络趋于合理,使得通过中压配电网大规模地转移负荷成为可能,配电自动化的实施,使得大批量开关的操作能够在很短的时间内完成,因此,实现紧急状态下配电网大面积断电快速恢复具有可行性。在紧急状态下配电网大面积断电快速恢复理论研究与实践方面,已经取得了许多研究成果,将这些成果应用到配电自动化系统中,将能有效提高配电网应急能力。
二、进展和趋势
1.智能分布式FA。如今,科学技术不断进步,我国的电力改革进程也在不断加快,电力企业所颁布的改革方案不仅能够开放配电环节,而且推动了分散发电装置的应用。在改革的影响下,配电网能够根据当地的实际情况确定能源解决方案,从而使线路损耗大大降低,能量的转换效率相应提高。FA体系是在多智能化基础上发展而来的智能体系,利用它能够实现区域协调器和智能体系的一致性。在进行配电自动化系统主站协调服务器的设置工作时,要将拓扑结构的变化和配电网的运行方式考虑在内,实现智能体系的规范性,保证通信的畅通性。
2.信息化平台背景下的配电实时信息引擎机制。在电力企业信息一体化集成系统中,配电管理系统、配电自动化以及配电图资地理系统是系统的重要组成部分,而且,它们之间存在着紧密联系,并不是相互独立的。配电自动化系统在以后的发展中,要建立和完善规范的管理体系,提高管理的质量和水平; 要实现信息管理系统和配电自动化的结合,实现系统集成化和信息一体化; 要选择科学的平台,提高配电自动化系统的安全性和可靠性。
随着经济的迅速发展和科学技术的不断进步,如何提高供电质量成为电力企业普遍关注的问题,配电自动化系统对于提高供电质量、保障供电安全起着重要作用,然而,在配电自动化系统的应用过程中,依然存在着一系列的问题。因此,电力企业要认识到配电自动化系统的重要作用,了解系统的关键技术和发展趋势,采取合理措施提高配电自动化系统应用水平,保证供电质量。
参考文献
[1]麦宁杰.配电自动化关键技术及其发展探讨[J].机电信息,2014(3).
[2]李伟波.配电自动化实用化关键技术及其进展[J].科技与企业,2013(21)