论文部分内容阅读
针对基于颜色特征的目标跟踪方法在跟踪多个行人目标时,易受衣服颜色相近的行人影响,造成行人目标跟踪发生错误的问题,提出一种改进Camshift算法的多行人目标跟踪方法:为克服单一颜色特征作为目标模型易造成目标丢失的不足,按一定的权值系数融合目标的颜色特征和HOG特征来建立目标模型;并分别对多个行人目标建立目标模型,将传统的Camshift算法的单目标跟踪扩展成多目标跟踪。实验结果表明,该方法相比于传统Camshift算法更具鲁棒性,跟踪准确率可提升5.3%,相比于粒子滤波算法,实时性能够提升30.23%。