论文部分内容阅读
深度学习技术因其在深度挖掘地物特征方面的独特优势为高光谱图像分类提供了技术手段。但是在高光谱图像的像素级地物分类中,由于样本输入尺寸的影响导致深度学习的层数受限,不能充分挖掘高光谱图像中的深度特征,为此提出基于残差网络特征融合的高光谱图像分类方法。首先通过主成分分析(principal component analysis,PCA)方法提取原始高光谱图像中的第一主成分,利用残差网络有效提取地物空谱特征;再通过反卷积算法实现特征图的扩充,将反卷积后不同维度的特征进行多尺度特征融合,充分挖掘高光谱图像中