论文部分内容阅读
数学猜想实际上是一种数学想象,是人的思维在探索数学规律、本质时的一种策略。它是建立在已有事实经验基础上,运用非逻辑手段而得到的一种假定,是一种合理推理。数学方法理论的倡导者G·波利亚曾说过,在数学领域中,猜想是合理的,是值得尊重的,是负责任的态度。数学猜想能缩短解决问题的时间;能获得数学发现的机会;能锻炼数学思维。因此,在小学数学教学中,运用猜想可以营造学习氛围,激起学生饱满的热情和积极的思维,培养学生克服困难的坚强意志,使他们自始至终地主动参与数学知识的探索过程。
一、猜想在新课引入中的运用
在众多引入新课的方法中,“猜想引入”以它独有的魅力,能很快扣住学生的心弦,使其情绪高涨,思维活跃,产生良好的学习动机,从而步入学习的最佳境地。
二、“猜想”在新知学习中的运用
在学生学习数学知识的过程中,加入“猜想”这一催化剂,可以促进学生多角度思维,加快大脑中表象形成的速度,从而抓住事物的本质特征,得出结论。如在圆周长教学中,教师让学生拿出事先准备好的学具:若干个大小不一的圆、一根绳子、一把米尺、一个圆规。问“要研究圆的周长,你想提出什么样的方法?”学生经过观察、思索、动手操作,提出猜想:“用绳子量出圆的周长,再量绳子长度行吗?”“把圆直接放在直尺上滚动,量出圆的周长行吗?”“对于这个圆,用绳子量出它的两个直径的长度,试一试能否还围成这个圆。不行,再量出三、四个直径的长度,看可不可以围成这个圆。猜想:圆的周长是不是三、四个直径的长度?”显然这是一个很了不起的猜想。教师追问:“为什么你要提出这样的猜想?”学生回答:“用圆规画圆,半径越长,圆就越大,也就是直径越长,圆的周长就越长,所以,用直径求圆的周长,既准确,又省力。”由此可见,通过学生一系列的自主猜想,誘发了跳跃思维,加快了知识形成的进程。
三、“猜想”在新知巩固中的运用
充分发挥学生的潜在能力是当今素质教育研究的重点。因此,教师要采取多种手段激活学生学习的内驱力,疏通学生潜能涌动的通道,以求迸发出智慧的火花。要想实现这一目标,教师可以充分利用猜想,在有利于发挥学生潜能的最佳环节之一——知识巩固阶段,调动学生头脑中已有的数学信息(概念、性质),并对之进行移动和重组,开拓新思路,从而获得突破性的结论。如我经常设计一些活泼的情境题、开放题,引导学生猜想,有这样一道题:“学校围墙外面是大片草地,一只羊拴在桩上,绳净长5米,这只羊可在多大面积吃到草?”学生们动手寻找答案,很快学生提出猜想:“要求这只羊可在多大面积吃到草,就是求以绳长5米为半径的圆的面积。过了一会儿,又有一位学生提出的猜想更为新颖别致、别出心裁。他说:“羊吃草有无数种情况。”并画出了一组图形,
这种由图形表达的结论充分展示了学生无法估量的创造潜能。对他猜想的构思、生成过程及其所经历的体验也只可意会。
可见,老师在教学中利用猜想,为学生创造了更多的自主思考机会,激发了学生学习的内驱力,发展了学生的潜在能力,使学生在认识所学知识、理解所学知识的同时,智力水平不断提高。
一、猜想在新课引入中的运用
在众多引入新课的方法中,“猜想引入”以它独有的魅力,能很快扣住学生的心弦,使其情绪高涨,思维活跃,产生良好的学习动机,从而步入学习的最佳境地。
二、“猜想”在新知学习中的运用
在学生学习数学知识的过程中,加入“猜想”这一催化剂,可以促进学生多角度思维,加快大脑中表象形成的速度,从而抓住事物的本质特征,得出结论。如在圆周长教学中,教师让学生拿出事先准备好的学具:若干个大小不一的圆、一根绳子、一把米尺、一个圆规。问“要研究圆的周长,你想提出什么样的方法?”学生经过观察、思索、动手操作,提出猜想:“用绳子量出圆的周长,再量绳子长度行吗?”“把圆直接放在直尺上滚动,量出圆的周长行吗?”“对于这个圆,用绳子量出它的两个直径的长度,试一试能否还围成这个圆。不行,再量出三、四个直径的长度,看可不可以围成这个圆。猜想:圆的周长是不是三、四个直径的长度?”显然这是一个很了不起的猜想。教师追问:“为什么你要提出这样的猜想?”学生回答:“用圆规画圆,半径越长,圆就越大,也就是直径越长,圆的周长就越长,所以,用直径求圆的周长,既准确,又省力。”由此可见,通过学生一系列的自主猜想,誘发了跳跃思维,加快了知识形成的进程。
三、“猜想”在新知巩固中的运用
充分发挥学生的潜在能力是当今素质教育研究的重点。因此,教师要采取多种手段激活学生学习的内驱力,疏通学生潜能涌动的通道,以求迸发出智慧的火花。要想实现这一目标,教师可以充分利用猜想,在有利于发挥学生潜能的最佳环节之一——知识巩固阶段,调动学生头脑中已有的数学信息(概念、性质),并对之进行移动和重组,开拓新思路,从而获得突破性的结论。如我经常设计一些活泼的情境题、开放题,引导学生猜想,有这样一道题:“学校围墙外面是大片草地,一只羊拴在桩上,绳净长5米,这只羊可在多大面积吃到草?”学生们动手寻找答案,很快学生提出猜想:“要求这只羊可在多大面积吃到草,就是求以绳长5米为半径的圆的面积。过了一会儿,又有一位学生提出的猜想更为新颖别致、别出心裁。他说:“羊吃草有无数种情况。”并画出了一组图形,
这种由图形表达的结论充分展示了学生无法估量的创造潜能。对他猜想的构思、生成过程及其所经历的体验也只可意会。
可见,老师在教学中利用猜想,为学生创造了更多的自主思考机会,激发了学生学习的内驱力,发展了学生的潜在能力,使学生在认识所学知识、理解所学知识的同时,智力水平不断提高。