论文部分内容阅读
随着信息技术的高速发展,多媒体技术的应用在课堂教学中显得越来越重要, 新课标指出,数学教学应从学生的实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践,思考,探索,交流,获取知识,形成技能,发展思维,学会学习,促使学生在教师指导下生动活泼地,极富个性地学习。几何画板学习起来比较容易、操作相对比较简单,而且功能强大,自然无可争议地成为广大中学数学教师课堂教学的首选软件。当我们从数学的本质特点和学生的认知特点出发,运用“几何画板”这种工具,通过数学实验这种教与学的方式,去影响学生数学认知结构的意义建构,帮助学生本质地理解数学,培养学生的数学精神、发现与创新能力时,我们就把握住了数学教育的时代性和科学性。
几何画板在初中数学中都有哪些作用呢?先谈一下自己的一点见解。
1创设动态情境,激发学习兴趣
几何画板能简单、准确、动态地表达几何图形和现象,这就为学生学习知识、观察思维提供了一个良好的场所和环境。在课堂中数学老师可以展示一些与学习内容关系非常密切的实例,使学生观其形,闻其音,丰富学生的感观,使学生自然地深入教师精心设计的情景中,不知不觉地思索着,学习着。如用几何画板制作一辆公路上运动的自行车,并请学生思考图中包含了哪些图形,在学生思考的过程中,双击“动画”按钮,使屏幕上的自行车往返运动。还可利用“轨迹跟踪点”的功能演示出自行车行进时车轮上一点、脚蹬上一点或车把上一点形成的轨迹,来说明“点动成线”的事实。这辆平常的自行车在数学课上出现,给刚步入几何大门的孩子们带来了欢笑和几分神奇。就在这愉悦的气氛中,他们迈进了平面几何的门槛,点、直线、线段、圆等几何图形已从他们最熟悉的现实世界中抽象出來了。而这种抽象是他们用眼观察,同时是自己亲身感受到的,激发了他们学习几何的动机,点燃了他们学习的热情。
2利用几何画板辅助教师讲授基础知识,帮助学生理解基本概念,帮助概念解析
概念是一事物区别于它事物的本质属性,概念来源于生活。在教学中讲授或学习概念常常需要借助图形进行直观性表述。几何中的概念,如“中点”,如果离开了具体的图形的帮助,那么其本质含义就无法揭示和表现出来,因而,图形成为说明概念的“形态式”语言。平面几何教学难,难在于学生不能把概念转换为图形语言,从图形中理解抽象的概念,学习也就望而却步。为此,在几何教学中,要善于利用几何画板强大的图形功能,使概念有具体直接的形象。例如用几何画板教学“三线八角”时,可以先让学生观察课件中八个角之间的位置关系,在学生观察思考的过程中,双击“同位角”按钮,几何画板能把图中的四组同位角从图中自动地拉出,单击鼠标,显示在屏幕上的四组同位角又分别返回原图中去;内错角、同旁内角类似,起到了快速、直观的效果。更重要的是还可以拖动其中任何一条直线使图形发生变化,来说明这些角的位置关系并未发生变化,从而使学生进一步认识其质的规定性,深化了对概念的理解,提高了课堂教学的效率。
3演示过程,化抽象为形象
教师要在教学过程中结合课件的使用,将有潜在意义的学习内容同学生已有认知结构联系起来,融会贯通,学生在学习新知识的过程中,积极主动地从原有的知识结构中提取出最易于与新知识联系的旧知识,这样,新旧知识在学生的头脑中会发生积极的相互联系和作用,即“同化”,导致原有认知结构的不断分化和重新组织,使学生获得新知识。
例如在讲解"圆柱的侧面展开图"这部分内容时,在传统的课堂教学中,比较典型的处理教材方法是:教师直接讲解圆柱是怎样形成的,再在黑板上用粉笔画出基本的演示图形,这种教学忽视了数学图形概念的形成过程,淡化了数学的本质特征,不利于学生对数学图形概念的理解。因此,在这学期学习这部分知识时,我特地应用下面的课件: <E:\123456\速读·下旬201602\Image\QQ截图20160110185400.png>
双击动画按钮就可以清楚、简捷地将圆柱的形成和侧面展开图的轨迹动态展示出来,并用色彩进行轨迹和图形优化,通过演示让学生清楚地看见圆柱的形成和侧面展开过程,对学生理解圆柱的形成和侧面展开图的特征带来了极大地帮助,学生不仅牢固掌握了书本上本节的内容,而且在问题的解决过程中涉及了多个有关知识点:矩形的面积、圆的面积、圆的周长等,这些内容也得到了复习、应用和巩固,起到了以点带面的作用,对知识体系的脉络把握更加准确,既学习并掌握了新知识,又复习、应用、巩固了与之相关的旧知识,同时还活跃、拓展了学生的思维,在教学过程中体现了学生的主体作用,把学习的主动权真正交给了学生。
4利用几何画板的绘图功能解决一些教学棘手问题
① 解决立体图形的展开图问题②图形的旋转问题 ③几何画板可以有效地帮助我们解决折叠问题。
5用《几何画板》的绘图功能画图找规律
由于几何画板具有极高的自由度和易操作性,便于学生在直观、动态的情景中快速观察、了解图形的联系和变化,这样势必大大节约了传统教学方式的烦琐与笨拙所消耗的时间,真正实现素质教育的减负诉求。
实验①:让学生用《几何画板》软件画一个任意三角形,再画出它的三条中线,问:你发现了什么规律?然后随意改变所画三角形的形状,看看这个规律是否改变,三角形的三条高有这个规律吗?三条角平分线呢?
实验②: 用《几何画板》软件画任意一个三角形,量出它的各内角并计算它们的和。然后随意改变所画三角形的形状,再量出变化后的各内角,计算内角和。由此,你能得出什么结论?
对于四边形的内角和定理、邻补角的关系、对顶角的关系、垂线段的性质、平行线的性质等,可类比以上方法进行验证。
运用几何画板还可以有效探索几何图形三种变换的性质,绘制函数图像并动态演示函数的性质,解决动点问题等。
华罗庚说过:“数缺形少直观,形缺数难人做。”使用几何画板进行数学教学,通过具体的感性信息的呈现,使学生不在把数学作为单纯的知识去理解它,而是能够更有实感的去把握它。这样,即能激发学生的情感,培养学生的兴趣,提高学生的创新能力。
几何画板在初中数学中都有哪些作用呢?先谈一下自己的一点见解。
1创设动态情境,激发学习兴趣
几何画板能简单、准确、动态地表达几何图形和现象,这就为学生学习知识、观察思维提供了一个良好的场所和环境。在课堂中数学老师可以展示一些与学习内容关系非常密切的实例,使学生观其形,闻其音,丰富学生的感观,使学生自然地深入教师精心设计的情景中,不知不觉地思索着,学习着。如用几何画板制作一辆公路上运动的自行车,并请学生思考图中包含了哪些图形,在学生思考的过程中,双击“动画”按钮,使屏幕上的自行车往返运动。还可利用“轨迹跟踪点”的功能演示出自行车行进时车轮上一点、脚蹬上一点或车把上一点形成的轨迹,来说明“点动成线”的事实。这辆平常的自行车在数学课上出现,给刚步入几何大门的孩子们带来了欢笑和几分神奇。就在这愉悦的气氛中,他们迈进了平面几何的门槛,点、直线、线段、圆等几何图形已从他们最熟悉的现实世界中抽象出來了。而这种抽象是他们用眼观察,同时是自己亲身感受到的,激发了他们学习几何的动机,点燃了他们学习的热情。
2利用几何画板辅助教师讲授基础知识,帮助学生理解基本概念,帮助概念解析
概念是一事物区别于它事物的本质属性,概念来源于生活。在教学中讲授或学习概念常常需要借助图形进行直观性表述。几何中的概念,如“中点”,如果离开了具体的图形的帮助,那么其本质含义就无法揭示和表现出来,因而,图形成为说明概念的“形态式”语言。平面几何教学难,难在于学生不能把概念转换为图形语言,从图形中理解抽象的概念,学习也就望而却步。为此,在几何教学中,要善于利用几何画板强大的图形功能,使概念有具体直接的形象。例如用几何画板教学“三线八角”时,可以先让学生观察课件中八个角之间的位置关系,在学生观察思考的过程中,双击“同位角”按钮,几何画板能把图中的四组同位角从图中自动地拉出,单击鼠标,显示在屏幕上的四组同位角又分别返回原图中去;内错角、同旁内角类似,起到了快速、直观的效果。更重要的是还可以拖动其中任何一条直线使图形发生变化,来说明这些角的位置关系并未发生变化,从而使学生进一步认识其质的规定性,深化了对概念的理解,提高了课堂教学的效率。
3演示过程,化抽象为形象
教师要在教学过程中结合课件的使用,将有潜在意义的学习内容同学生已有认知结构联系起来,融会贯通,学生在学习新知识的过程中,积极主动地从原有的知识结构中提取出最易于与新知识联系的旧知识,这样,新旧知识在学生的头脑中会发生积极的相互联系和作用,即“同化”,导致原有认知结构的不断分化和重新组织,使学生获得新知识。
例如在讲解"圆柱的侧面展开图"这部分内容时,在传统的课堂教学中,比较典型的处理教材方法是:教师直接讲解圆柱是怎样形成的,再在黑板上用粉笔画出基本的演示图形,这种教学忽视了数学图形概念的形成过程,淡化了数学的本质特征,不利于学生对数学图形概念的理解。因此,在这学期学习这部分知识时,我特地应用下面的课件: <E:\123456\速读·下旬201602\Image\QQ截图20160110185400.png>
双击动画按钮就可以清楚、简捷地将圆柱的形成和侧面展开图的轨迹动态展示出来,并用色彩进行轨迹和图形优化,通过演示让学生清楚地看见圆柱的形成和侧面展开过程,对学生理解圆柱的形成和侧面展开图的特征带来了极大地帮助,学生不仅牢固掌握了书本上本节的内容,而且在问题的解决过程中涉及了多个有关知识点:矩形的面积、圆的面积、圆的周长等,这些内容也得到了复习、应用和巩固,起到了以点带面的作用,对知识体系的脉络把握更加准确,既学习并掌握了新知识,又复习、应用、巩固了与之相关的旧知识,同时还活跃、拓展了学生的思维,在教学过程中体现了学生的主体作用,把学习的主动权真正交给了学生。
4利用几何画板的绘图功能解决一些教学棘手问题
① 解决立体图形的展开图问题②图形的旋转问题 ③几何画板可以有效地帮助我们解决折叠问题。
5用《几何画板》的绘图功能画图找规律
由于几何画板具有极高的自由度和易操作性,便于学生在直观、动态的情景中快速观察、了解图形的联系和变化,这样势必大大节约了传统教学方式的烦琐与笨拙所消耗的时间,真正实现素质教育的减负诉求。
实验①:让学生用《几何画板》软件画一个任意三角形,再画出它的三条中线,问:你发现了什么规律?然后随意改变所画三角形的形状,看看这个规律是否改变,三角形的三条高有这个规律吗?三条角平分线呢?
实验②: 用《几何画板》软件画任意一个三角形,量出它的各内角并计算它们的和。然后随意改变所画三角形的形状,再量出变化后的各内角,计算内角和。由此,你能得出什么结论?
对于四边形的内角和定理、邻补角的关系、对顶角的关系、垂线段的性质、平行线的性质等,可类比以上方法进行验证。
运用几何画板还可以有效探索几何图形三种变换的性质,绘制函数图像并动态演示函数的性质,解决动点问题等。
华罗庚说过:“数缺形少直观,形缺数难人做。”使用几何画板进行数学教学,通过具体的感性信息的呈现,使学生不在把数学作为单纯的知识去理解它,而是能够更有实感的去把握它。这样,即能激发学生的情感,培养学生的兴趣,提高学生的创新能力。