论文部分内容阅读
决策支持系统是跨学科的综合体系,涉及机器学习理论。支持向量机是近几年发展起来的学习方法,它是利用最优分类面(线)将两类样本在特征空间或输入空间中无错误地分开,而且要使两类的分类空隙最大。然而当两类中的样本数量差剐悬殊时,支持向量机的分类能力会下降。为了解决此问题,本文提出了一种改选的支持向量机算法,在所开发的医学决策支持系统上的应用表明,此方法在解决两类样本数量十分不均衡问题时有着很强的分类能力,不失为一种有效的决策分析工具。