论文部分内容阅读
The quality of bonding is often a concern in rubber-to-metal bonded parts with regard to the integrity and stability of the structure. In this study, shearography has been used to detect the out-of-plane deformation of the defects caused by thermal and vacuum stresses. A sample of the vulcanized styrene-butadiene rubber bonded to steel with known artificial voids was prepared and during bonding process a region was glued with thick adhesives. The rubber surface of the sample was inspected in thermal radiation and vacuum modes respectively with a self-designed shearography device. Meanwhile, a numerical simulation was conducted to predict the out-of-plane deformation of the rubber surface in these two stress modes. Results from the numerical simulation and the experiments indicated that the debonding defects could be inspected in both loading modes. In the thermal radiation mode the region with thick adhesives could be identified successfully. This study provides a guideline for quality control of rubber-to-metal structures using an optical method.
The quality of bonding is often a concern in rubber-to-metal bonded parts with regard to the integrity and stability of the structure. In this study, shearography has been used to detect the out-of-plane deformation of the defects caused by thermal A sample of the vulcanized styrene-butadiene rubber bonded to steel with known artificial voids was prepared and during bonding process was glued with thick adhesives. The rubber surface of the sample was inspected in thermal radiation and vacuum modes respectively with a self-designed shearography device. Meanwhile, a numerical simulation was conducted to predict the out-of-plane deformation of the rubber surface in these two stress modes. Results from the numerical simulation and the experiments that that the debonding defects could be inspected in both loading modes. In the thermal radiation mode the region with thick adhesives could be identified successfully. This study provides a guideline for quality control of rubber-to-metal structures using an optical method.