论文部分内容阅读
车道线检测是自动或智能辅助驾驶的核心问题之一。本文主要研究单目视觉下车道线检测算法。车道线具有多样性,其存在的环境又具有复杂性,因此准确高效的车道线检测是一个具有挑战性的问题。本文提出了一种新的车道线检测算法,在传统车道检测方法中引入深度学习模型,主要包括以下步骤:首先使用图像增强算法利用车道线先验特征进行边缘增强,对于边缘增强后的图像采用线段检测器进行线段提取,然后利用卷积神经网络构造线段分类器排除线段噪声,最后通过对消失点聚类排除无关线段,并按斜率聚类产生主车道线。实验表明,本文实现的算法具备较