【摘 要】
:
针对当前基于深度学习的检测器不能有效检测形状不规则或长宽相差悬殊的目标的问题,在传统Faster R-CNN算法的基础上,提出了一个改进的二阶段目标检测框架——Accurate R-CNN。首先,提出了新的交并比(IoU)度量——有效交并比(EIoU),通过提出中心度权重来降低训练数据中冗余包围框的占比。然后,提出了一个上下文相关的特征重分配模块(FRM),通过建模目标的远程依赖和局部上下文关系信
【机 构】
:
中国科学院成都计算机应用研究所,中国科学院大学计算机科学与技术学院,哈尔滨工业大学(深圳)人工智能研究院
论文部分内容阅读
针对当前基于深度学习的检测器不能有效检测形状不规则或长宽相差悬殊的目标的问题,在传统Faster R-CNN算法的基础上,提出了一个改进的二阶段目标检测框架——Accurate R-CNN。首先,提出了新的交并比(IoU)度量——有效交并比(EIoU),通过提出中心度权重来降低训练数据中冗余包围框的占比。然后,提出了一个上下文相关的特征重分配模块(FRM),通过建模目标的远程依赖和局部上下文关系信息对特征进行重编码,以弥补池化过程中的形状信息损失。实验结果表明,在微软多场景通用目标(MS COCO)
其他文献
实体关系抽取是构建大规模知识图谱及各种信息抽取任务的关键步骤。基于预训练语言模型,提出基于头实体注意力的实体关系联合抽取方法。该方法采用卷积神经网络(CNN)提取头实体关键信息,并采用注意力机制捕获头实体与尾实体之间的依赖关系,构建了基于头实体注意力的联合抽取模型(JSA)。在公共数据集纽约时报语料库(NYT)和采用远程监督方法构建的人工智能领域数据集上进行实验,所提模型的F1值相较于级联二元标记
针对目前知识图谱查询中节点之间语义关联性不高、查询效率低等问题,提出了一种实体关联的查询方法,然后以此为基础设计并实现了基于知识图谱的企业查询系统。所提查询方法采用四层过滤模型,首先通过路径搜索找到目标节点的公共路径,从而过滤掉关联程度较低的查询节点,得到过滤集合;然后在中间两层分别对过滤集合的属性和关系计算关联度,再基于动态阈值完成图集过滤;最后综合实体关联度和关系关联度得分并排序得到最终的查询
针对一般特征选择算法未能揭示数据特征与数据类别之间的可解释性映射关系的问题,在基因表达式编程(GEP)的基础上,通过引入初始化方法、变异策略以及适应度评价方法,提出了一种改进的基于层次距离的GEP特征选择分类算法(FSLDGEP)。首先,利用定义的选择概率有导向地初始化种群个体,从而增加种群中有效个体的数量;其次,定义个体的层次邻域,使种群个体基于其层次邻域进行变异,并解决了变异过程中的盲目无导向
为了在不显著提升计算复杂度的情况下,有效提升通信系统的误码率(BER)性能,利用深度学习在数据处理方面的强大能力,提出一种面向基于蜂窝网络的车联网(C-V2X)通信的基于深度学习的联合信道估计与均衡算法——V-EstEqNet。与传统算法分两个阶段分别进行信道估计与均衡不同,V-EstEqNet将通信系统接收机中的信道估计与信道均衡进行联合考虑,并利用深度学习网络直接对接收数据进行校正和恢复,无须
为提高重大公共卫生风险治理过程中的应急物流效率,在分析政府与物流企业行为特征的基础上,设计了面向重大公共卫生风险治理的高效应急物流协同机制。通过构建地方政府与物流企业的演化博弈模型,探究了地方政府监管和物流企业协同的演化规律与路径,然后利用数值仿真来验证所提模型的可行性和有效性。结果表明,与商业物流协同机制相比,面向重大公共卫生风险治理的应急物流协同机制更依赖于地方政府的监管力度,并且该机制使得物
针对目标跟踪任务中,全卷积孪生网络(SiamFC)跟踪算法存在因目标的旋转、尺度变化而造成跟踪错误或跟踪结果不准确的问题,提出一种带旋转与尺度估计的SiamFC跟踪算法。该算法由定位模块与旋转、尺度估计模块两部分组成。首先在定位模块中,利用SiamFC算法获得跟踪位置,并结合旋转与尺度信息对该位置进行调整;其次在旋转、尺度估计模块中,鉴于图像的旋转和尺度变化在对数极坐标系下变成了平移运动,将目标搜
摘 要 现代陶艺发展至今,从抽象表现主义、怪怖艺术风格、极限主义风格到超写实主义风格等等,都无不展现着多元及自由的发展,作品中丰富的内涵意义及情感超越了作品本身的实用性,展现出独特的审美情趣。 关键词 现代陶艺;自由;发展 在陶瓷艺术分支中,现代陶艺并不能泛指当代所有的陶瓷艺术。那什么是现代陶艺呢?现代陶艺是艺术家将陶瓷材质结合泥土来表现人与人、人与自然、人与社会的关系。相比传统陶瓷中的匠气
在目标检测网络(ObjectNet)和场景识别网络相结合的方法中,由于ObjectNet提取的目标特征和场景网络提取的场景特征的维度和性质不一致,且目标特征中存在影响场景判断的冗余信息,导致场景识别的准确率低。针对这个问题,提出一种改进的结合目标检测的室内场景识别方法。首先,在ObjectNet中引入类转换矩阵(CCM),将ObjectNet输出的目标特征进行转化,使得目标特征的维度与场景特征的维
摘 要 清乾隆时期多穆壶己发展至顶峰,从丰富多样的材质、精美绝伦的器型和繁褥华美的纹样中可见一斑,具有较高的艺术价值和经济价值。本文旨在通过分析乾隆时期多穆壶的造型特征及使用功能,探究其承载的文化内涵与时代风貌。 关键词 多穆壶;乾隆时期;艺术特征;使用功能 0 前 言 许之衡《饮流斋说瓷·说杂具》记载:“有一种壶,形甚特别,略如直截之竹筒,惟于上半截旁出一嘴,嘴作龙形,其盖在顶处甚平,不
级联深度卷积神经网络(DCNN)算法为首先在人脸关键点检测中使用卷积神经网络(CNN)的模型,CNN的使用使得检测精度得到极大的提升。针对该策略需要对相邻阶段间的数据反复进行回归处理使得算法流程十分复杂的问题,提出基于非对称卷积-压缩激发-次代残差网络(AC-SE-ResNeXt)的人脸关键点检测算法。所提算法仅使用单阶段回归,既避免了级联策略中多阶段回归的算法流程复杂性,又解决了相邻阶段间数据需