论文部分内容阅读
研究高效进行数据聚类,提高数据聚类能力的问题。传统的模糊C均值算法具有对初始值和噪声极为敏感和遗传算法在局部极值点收敛的缺陷。基于模糊c均值聚类算法,提出一种改进的优化聚类算法。利用混沌序列的均匀遍历特性和差分进化算法的高效全局搜索能力,对模糊c均值算法进行改进,利用Logistics混沌映射对聚类算法进行优化搜索,把混沌扰动量引入到进化种群当中,弥补了模糊C均值算法的缺陷。采用改进的Logistics映射扰动搜索聚类算法,以目标识别为案例,综合4类目标特征参数为研究对象,开发了一套有价值的目标识别专家系