论文部分内容阅读
为了减轻大坝安全监测数据异常识别的数据处理压力,解决传统方法难以辨别非最值异常点的问题,提出利用卷积神经网络(CNN)识别大坝安全监测数据异常模式。监测数据过程线的周期性及异常值的显著差别使CNN得以发挥图像分类功能,分别将存在单个突跳点、无异常、存在震荡段、台阶、多个突跳点、台坎的监测数据过程线作为6类图像,人工生成65 000张训练数据及6 500张测试数据,6类图像的数量比为1∶1.5∶1∶1∶1∶1。利用CNN对混合6种过程线图像的测试数据集进行图像分类,总体准确率为0.973 1,且6种图