论文部分内容阅读
鉴于多目标优化问题的广泛存在性以及目前关于它的研究还较少,且没有一种很好的、通用的多目标PSO算法,本文提出了一种基于Pareto解集的多目标粒子群算法.通过采用一个"记忆体"来存储当前得到的Pareto最优解,对每次迭代得到的Pareto解集里的解两两进行比较以选取一个较优的解作为更新方程中当前最优解,这样可以更好的引导粒子群进行下一步的寻优操作,最终得到一个完整的Pareto最优解集.几个测试函数的仿真实验结果也表明了该算法取得了很好的效果.