论文部分内容阅读
文字识别是一种通用的图像理解技术,对信息检索、车牌识别和自动驾驶等应用的研究有着重要意义。随着神经网络的伟大复兴,场景文字识别任务得到了很大推动,近年来涌现了许多基于深度学习的文字识别算法。本文提出了一种基于特征融合的CRNN改进算法,使用三个通用的文字识别数据集从识别准确率、运行效率和模型大小三个方面进行分析。实验结果表明该算法在提高准确率的同时,运行效率也有所提高。