论文部分内容阅读
为了提高行人检测的准确性和鲁棒性,针对现有行人检测方法准确率低且实时性不佳等问题,参考目标检测算法中快速区域卷积神经网络Faster RCNN算法,首先采用K-means聚类算法得到合适的宽高比,然后优化区域建议网络(RPN)结构,降低计算量,并通过比较MobileNet、VGG16、ResNet50特征提取网络效果优劣,提出改进Faster RCNN的交通场景下行人检测方法,在Caltech-NEW数据集上进行训练与测试。实验结果表明,该方法大幅提高交通场景下行人检测的实时性和准确性,在测试集上检