【摘 要】
:
根据分数算子的Charef有理逼近的单分数幂极点、零点模型,引入两类新型非正则标度方程——新颖标度方程,该方程用于表征分数算子的Charef有理逼近的极限情形,并具有物理可实现性.首先考察新颖标度方程有理函数序列的运算有效性、运算性能,对比与典型标度方程之间的差异.发现新颖标度方程有理函数序列的真实解与近似解结果不同,该方程为标度方程的近似求解法提供了新的思路.之后结合零极点子系统的运算局域化特征,定量分析新颖标度方程的运算振荡周期.最后,发现复平面内的零极点分布规律与典型标度方程不同,找出新颖标度方程的
【机 构】
:
四川大学电子信息学院,成都610064
论文部分内容阅读
根据分数算子的Charef有理逼近的单分数幂极点、零点模型,引入两类新型非正则标度方程——新颖标度方程,该方程用于表征分数算子的Charef有理逼近的极限情形,并具有物理可实现性.首先考察新颖标度方程有理函数序列的运算有效性、运算性能,对比与典型标度方程之间的差异.发现新颖标度方程有理函数序列的真实解与近似解结果不同,该方程为标度方程的近似求解法提供了新的思路.之后结合零极点子系统的运算局域化特征,定量分析新颖标度方程的运算振荡周期.最后,发现复平面内的零极点分布规律与典型标度方程不同,找出新颖标度方程的奇异特性.
其他文献
本文研究了一阶周期边值问题{-u\'(t)+a(t)u(t)=λf(u(t)),0<t<T,u(0)=u(T)多个正解的存在性,其中λ>0是一个参数,a∈C(R,[0,∞))是一个T-周期函数且∫T0a(t)dt>0,f∈C([0,∞),(0,∞))且单调递增在f0=limu→0+f(u)/u=0,f∞=limu→∞f(u)/u=0的条件下,本文证明存在一个λ*>0,使当0<λ<λ*时问题不存在正解;当λ=λ*时问题至少存在一个正解;当λ>λ*时问题至少存在两个正解.主要结果的证明基于上下解方法和Le
设Fq是特征为p的有限域,d为正整数.对任意的a,b∈F*q,c∈Fq方程.axd+byd=c在Fq上是否恒有解这一问题长期吸引着大量研究者的关注.当d=2时,Cauchy给出了肯定结论.当d=3时,Skolem证明,对任意的素数p≠7,方程.ax3+by3=c在Fq上恒有解;Singh证明,对任意的素数方幂q≠4,方程.ax3+by3=c在Fq上恒有解.本文研究d=4的情形,给出了该方程解的存在性,即当q≠5,9,13,17,25,29时,对任意的a,b∈F*q,c∈Fq,方程.ax4+by4=c在Fq
本文针对周期多孔结构的Steklov弹性特征值问题发展了一种多尺度渐近分析与计算方法,通过对特征函数进行二阶双尺度渐近展开,依次推导得到了一阶单胞函数、材料等效弹性系数、均匀化弹性特征值问题及二阶单胞函数.该多尺度渐近模型的特点是均匀化特征值出现在控制微分方程中而不在孔洞边界上.通过对特征值进行二阶渐近展开并利用校正方程思想,本文得到了特征值的一阶与二阶校正表达式,给出了多尺度特征值的误差估计.最后,基于多尺度渐近展开模型本文进行了有限元计算.数值算例结果显示了多尺度分析在预测Steklov弹性特征值与特
设k和n为非负整数.第二类Stirling数表示将n个元素划分为恰好k个非空集合的个数,记为S(n,k).对任意给定的素数p和正整数n,存在惟一的整数a和m≥0使得n=rnap,其中(a,p)=1(a与p互素).称m为n的p-adic赋值,并记vp(n)=m.第二类Stirling数的p-adic赋值是数论和代数拓扑领域的重要问题.本文研究了一些特殊第二类Stirling数S(pn,2tp)的p-adic赋值,其中p为奇素数,t和n为正整数.本文证明当n≥2,2≤2t<p时vp(S(pn,2tp))≥n+
本文运用Leray-Schauder非线性择抉理论和Leray-Schauder度理论得到了一致分数阶微分方程两点边值问题{Dβ(Dα+λ)u(t)=f(t,u(t)),0<t<1,u(0)=0,Dαu(1)=0解的存在性,其中α,β∈(0,1],λ是实数,Dα,Dβ是一致分数阶导数,u(t)∈E=C([0,1],R),f(t,u(t)):[0,1]×R→R是给定的连续函数.最后本文给出一个例子作为应用.
近年来,人脸识别技术作为一种用来抓取生物面部特征信息以及匹配现有数据库中人脸数据的有力手段,以其无接触性、可远距离实施等优点在越来越多的场景中得到了应用.针对在自然无约束条件下,受到光照、姿势和背景环境等因素的影响,设备捕捉到的人脸图像在现有的人脸识别模型中识别率依然不足的情况,本文提出了一种基于分数阶微分改进的残差网络(ResNet)人脸识别方法.本方法通过在原有网络模型结构中增加注意力机制来增强人脸特征提取,融合不同通道和空间的信息提升网络的健壮性,同时利用分数阶微分对节点函数进行处理,增加卷积块提取
情绪识别作为计算机视觉的一项基本课题已经取得很大进展,然而在无约束自然场景中的情绪识别仍具挑战性.现有方法主要是利用人脸、姿态以及场景信息识别情绪,但是忽略了人物个体在场景中的不确定性,以及不能很好地挖掘场景中的情绪线索.针对现有研究存在的问题,提出了基于人物与场景线索的双分支网络结构,两个分支独立学习,通过早期融合得到情绪分类结果.对于人物在场景中的不确定性,引入身体注意力机制预判人物情绪置信度进而获得人体的特征表示,场景中引入空间注意力机制和特征金字塔以便充分获得场景中不同粒度的情绪线索.实验结果表明
为解决铣刀磨损状态监测问题,提出一种改进的鲸鱼算法优化最小二乘支持向量机的状态识别方法.首先,采用变分模态分解处理铣削过程中的振动信号,分解得到的固有模态分量进行特征提取;然后,针对鲸鱼算法易陷入局部最优解、收敛精度低的问题,引入混合反向学习算法和非线性收敛因子进行改进,并采用基准测试函数验证改进后的鲸鱼算法的有效性;最后,将改进的鲸鱼算法优化LSSVM模型应用于铣刀磨损状态识别仿真实验.实验结果表明,相较于粒子群算法与传统鲸鱼算法,改进的鲸鱼算法优化LSSVM具有更高的识别精度.
针对交通标志检测小目标数量多、定位困难及检测精度低等问题,本文提出一种基于改进YOLOv3的交通标志检测算法.首先,在网络结构中引入空间金字塔池化模块对3个尺度的预测特征图进行分块池化操作,提取出相同维度的输出,解决多尺度预测中可能出现的信息丢失和尺度不统一问题;然后,加入FI模块对3个尺度特征图进行信息融合,将浅层大特征图中包含的小目标信息添加到深层小特征图中,从而提高小目标检测精度.针对交通标志数据集特点,使用基于GIoU改进的TIoU作为边界框损失函数替换MSE函数,使得边界框回归更加准确;最后,通
方面级情感分析旨在识别出句子中显式提及的方面及其情感极性,是细粒度情感分析中的重要任务.现有使用序列标注进行方面级情感分析的方法存在当方面(aspect)由多个单词构成时,每个单词的情感极性可能不一致,而基于跨度(span)的方法存在因方面标签和情感标签混合而导致的标签异质问题,同时现有的研究忽略了文本中方面—情感极性对之间的相互关联.为了解决上述问题,受关系抽取技术的启发,本文将方面—情感极性对抽取视作一元关系抽取问题,其中方面看成论元,其对应的情感极性作为关系,通过序列解码捕捉方面—情感极性对之间的关