论文部分内容阅读
为实现输电线路杆塔中鸟窝的快速准确检测,提出一种基于Retina Net深度学习模型的鸟窝识别方法,利用ResNet-50进行前期特征提取,通过FPN网络对前期标准特征进行加强,构建特征金字塔影像,以满足不同尺度大小的鸟窝目标检测,然后在特征金字塔的基础上构建了一个分类子网和回归子网,分别用于识别鸟窝和回归鸟窝的具体位置。通过与经典目标检测方法进行详细对比分析,利用F1-Score精度指标和检测速度指标对检测效果进行了量化分析,实验结果表明,所采用的鸟窝检测模型F1-Score指标可达0.932,优