论文部分内容阅读
基于CUDA架构在GPU上实现了神经网络前向传播算法,该算法利用神经网络各层内神经元计算的并行性,每层使用一个Kernel函数来并行计算该层神经元的值,每个Kernel函数都根据神经网络的特性和CUDA架构的特点进行优化。实验表明,该算法比普通的CPU上的算法快了约7倍。研究结果对于提高神经网络的运算速度以及CUDA的适用场合都有参考价值。