论文部分内容阅读
分析神经网络学习过程中各参数的变化动态,对理解网络的动力学行为,改进网络的结构和性能等具有积极意义.本文讨论了用梯度算法优化误差平方和损失函数时RBF网隐节点参数的变化动态,即算法收敛后各隐节点参数的可能取值.主要结论包括:如果算法收敛后损失函数不为零,则各隐节点将位于样本输入的加权聚类中心;如果损失函数为零,则网络中的冗余隐节点将出现萎缩、衰减、外移或重合现象.进一步的试验发现,对结构过大的RBF网,冗余隐节点的萎缩、外移、衰减和重合是频繁出现的现象.