论文部分内容阅读
【摘 要】 在高层建筑结构的设计过程中,剪力墙结构以其自身具备的刚度大、整体性好以及用钢量少的优点,在高层建筑结构的设计中得到了广泛的运用.本文就高层建筑结构设计特点与剪力墙设计进行分析。
【关键词】 高层建筑;结构设计;剪力墙结构
引言:
剪力墙结构主要包括连梁与墙肢两种结构,自身具备刚度大、承载力强、抵抗水平力强、整体性良好、侧移水平高以及用钢量少的优点。其被越来越广泛的应用在高层建筑结构设计中,例如高层住宅和高层旅馆的结构设计,居室与客房空间比较小,需要设置很多的分隔墙,运用现浇剪力墙结构技术,能够有效的实现承重墙和分隔墙的互相结合,具有很强的经济性。
一、高层建筑结构设计特点
1.水平荷载成为决定因素
一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地质作用,其数值是随结构动力特性的不同而有较大幅度的变化。
2.轴向变形不容忽视
高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。
3.侧移成为控制指标
与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
4.结构延性是重要设计指标
相对于较低楼房而言,高楼结构更柔一些,在地展作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
二、高层建筑结构分析
1.弹性假定
目前工程上实用的高层建筑结构分析方法均采用弹性的计算方法。在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况。但是在遭受地震或强台风作用时,高层建筑结构往往会产生较大的位移,出现裂缝,进入到弹塑性工作阶段。此时仍按弹性方法计算内力和位移时不能反映结构的真实工作状态的,应按弹塑性动力分析方法进行设计。
2.刚性楼板假定
许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。这一假定大大减少了结构位移的自由度,简化了计算方法。并为采用空间薄壁杆件理论计算筒体结构提供了条件。一般来说,对框架体系和剪力墙体系采用这一假定是完全可以的。但是,对于竖向刚度有突变的结构,楼板刚度较小,主要抗侧力构件间距过大或是层数较少等情况,楼板变形的影响较大。特别是对结构底部和顶部各层内力和位移的影响更为明显。可将这些楼层的剪力作适当调整来考虑这种影响。
3.計算图形的假定
高层建筑结构体系整体分析采用的计算图形有三种:
(1)一维协同分析时,只考虑各抗侧力构件在一个位移自由度方向上的变形协调。在水平力作用下,将结构体系简化为由平行水平力方向上的各福抗侧力构件组成的平面结构。根据刚性楼板假定,同一楼面标高处各抗侧力构件的侧移相等,由此即可建立一维协同的基本方程。在扭矩作用下,则根据同层楼板上各抗侧力构件转角相等的条件建立基本方程。一维协同分析是各种手算方法采用最多的计算图形。
(2)二维协同分析。二维协同分析虽然仍将单抗侧力构件视为平面结构,但考虑了同层楼板上各抗侧力构件在楼面内的变形协调。纵横两方向的抗侧力构件共同工作,同时计戴扭矩与水平力同时计算。剪力楼板位移与其对应外力作用的平衡方程,用矩阵位移法求解。二维协同分析主要为中小微型计算机上的杆系结构分析程序所采用。
(3)三维空间分析。二维协同分析并没有考虑抗侧力构件的公共节点在楼面外的位移协调《竖向位移和转角的协调),而且,忽略抗侧力构件平面外的刚度和扭转刚度对具有明显空间工作性能的筒体结构也是不妥当的。三维空间分析的普通杆单元每一节点有6个自由度,按符拉索夫薄壁杆理论分析的杆端节点还应考虑截面翘曲,有7个自由度。
三、剪力墙结构在高层建筑结构设计中的要点
1.剪力墙结构的布置
在剪力墙结构中,其自身具备的水平地震作用力、竖向荷载力以及风荷载力主要运用钢筋混凝土剪力墙进行承担,因此,在布置剪力墙时,要能够达到建筑物自身的要求,找出结构自身的轴线,规则性的进行对称布置。在布置时,除了要对竖向承载构件进行考虑和布置外,还要对结构的对称性进行考虑,防止出现扭转效应。主要对以下几个方面进行考虑:
1.1慎重选择短肢剪力墙结构
虽然使用短肢剪力墙结构,能够对建筑进行灵活的布置,减少建筑结构自身的重量,但是其自身具有的抗震性能不强,不能很好的保证建筑自身的安全。因此,在选择该结构时,要慎重考虑选择。
1.2不能出现独立的小墙肢
如果在建筑结构中出现独立墙肢,那么将会增加施工难度。在工程设计中,可以运用合并洞口、合理布置建筑剪力墙的方式,来消除独立墙肢,进而降低施工难度。
1.3保证剪力墙结构整体刚度力度
如果剪力墙结构刚度较大,那么其施工周期较短,地震力比较大,消耗施工材料多,不具有经济性。另外,由于地震力较大,将会导致墙肢、连梁超筋以及截面不能满足抗剪力的标准,加大截面设计的难度。
2.结构参数进行控制
为了有效的保证结构布置的科学合理性,需要对位移比、刚重比、侧向刚度比、层间位移角以及周期比等参数进行控制。其中,位移比指的是在高层建筑中,其竖向构件自身的层间位移、水平位移和本楼层平均值之间的比值。主要对结构布置自身具有的不规则性进行限值,能够防止出现大的偏心力,进而导致结构出现扭转效应。
3.剪力墙结构的计算和配筋
3.1剪力墙的墙身
剪力墙中包括的有竖向钢筋和水平向钢筋,在对其进行构造和计算时,要对其用量进行确定,主要对正截面中的抗弯承载力、斜截面中的抗剪承载力进行验算。剪力墙中的钢筋配置要求为:在一级、二级、三级的抗震设计中,竖向配筋率与水平配筋率不能低于0.25%;在四级、一级非抗震设计中,其配筋率不能低于0.2%。
3.2连梁
剪力墙自身只有具备了一定的强度和刚度,才能够保证墙体与连梁的协调工作。通常情况下,连梁具有提高剪力墙刚度、紧密连接墙肢的作用。因此,在对高层建筑结构整体进行计算的过程中,要相应的折减连梁的刚度。其折减值不能低于0.5,取值范围适宜控制在0.5~1.0。如果在对折减刚度后,建筑结构的正截面受弯承载力、斜截面受剪承载力不足,那么可以通过降低连梁高度、减小整体刚度的方式,来减少地震带来的影响。
四、结束语
高层建筑结构和剪力墙结构设计,受力情况较为复杂,应根据具体情况,确定结构计算模型及方法,并充分考虑结构的各种不利因素。
参考文献:
[1]郭兆伟.高层框架剪力墙结构抗震设计的技术要点分析[J].建材技术与应用,2011,01(11):39-40.
[2]师希望,林顺青.某高层框架—剪力墙结构设计要点的探讨[J].科学之友,2007,10(31):75-76.
【关键词】 高层建筑;结构设计;剪力墙结构
引言:
剪力墙结构主要包括连梁与墙肢两种结构,自身具备刚度大、承载力强、抵抗水平力强、整体性良好、侧移水平高以及用钢量少的优点。其被越来越广泛的应用在高层建筑结构设计中,例如高层住宅和高层旅馆的结构设计,居室与客房空间比较小,需要设置很多的分隔墙,运用现浇剪力墙结构技术,能够有效的实现承重墙和分隔墙的互相结合,具有很强的经济性。
一、高层建筑结构设计特点
1.水平荷载成为决定因素
一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地质作用,其数值是随结构动力特性的不同而有较大幅度的变化。
2.轴向变形不容忽视
高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。
3.侧移成为控制指标
与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
4.结构延性是重要设计指标
相对于较低楼房而言,高楼结构更柔一些,在地展作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
二、高层建筑结构分析
1.弹性假定
目前工程上实用的高层建筑结构分析方法均采用弹性的计算方法。在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况。但是在遭受地震或强台风作用时,高层建筑结构往往会产生较大的位移,出现裂缝,进入到弹塑性工作阶段。此时仍按弹性方法计算内力和位移时不能反映结构的真实工作状态的,应按弹塑性动力分析方法进行设计。
2.刚性楼板假定
许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。这一假定大大减少了结构位移的自由度,简化了计算方法。并为采用空间薄壁杆件理论计算筒体结构提供了条件。一般来说,对框架体系和剪力墙体系采用这一假定是完全可以的。但是,对于竖向刚度有突变的结构,楼板刚度较小,主要抗侧力构件间距过大或是层数较少等情况,楼板变形的影响较大。特别是对结构底部和顶部各层内力和位移的影响更为明显。可将这些楼层的剪力作适当调整来考虑这种影响。
3.計算图形的假定
高层建筑结构体系整体分析采用的计算图形有三种:
(1)一维协同分析时,只考虑各抗侧力构件在一个位移自由度方向上的变形协调。在水平力作用下,将结构体系简化为由平行水平力方向上的各福抗侧力构件组成的平面结构。根据刚性楼板假定,同一楼面标高处各抗侧力构件的侧移相等,由此即可建立一维协同的基本方程。在扭矩作用下,则根据同层楼板上各抗侧力构件转角相等的条件建立基本方程。一维协同分析是各种手算方法采用最多的计算图形。
(2)二维协同分析。二维协同分析虽然仍将单抗侧力构件视为平面结构,但考虑了同层楼板上各抗侧力构件在楼面内的变形协调。纵横两方向的抗侧力构件共同工作,同时计戴扭矩与水平力同时计算。剪力楼板位移与其对应外力作用的平衡方程,用矩阵位移法求解。二维协同分析主要为中小微型计算机上的杆系结构分析程序所采用。
(3)三维空间分析。二维协同分析并没有考虑抗侧力构件的公共节点在楼面外的位移协调《竖向位移和转角的协调),而且,忽略抗侧力构件平面外的刚度和扭转刚度对具有明显空间工作性能的筒体结构也是不妥当的。三维空间分析的普通杆单元每一节点有6个自由度,按符拉索夫薄壁杆理论分析的杆端节点还应考虑截面翘曲,有7个自由度。
三、剪力墙结构在高层建筑结构设计中的要点
1.剪力墙结构的布置
在剪力墙结构中,其自身具备的水平地震作用力、竖向荷载力以及风荷载力主要运用钢筋混凝土剪力墙进行承担,因此,在布置剪力墙时,要能够达到建筑物自身的要求,找出结构自身的轴线,规则性的进行对称布置。在布置时,除了要对竖向承载构件进行考虑和布置外,还要对结构的对称性进行考虑,防止出现扭转效应。主要对以下几个方面进行考虑:
1.1慎重选择短肢剪力墙结构
虽然使用短肢剪力墙结构,能够对建筑进行灵活的布置,减少建筑结构自身的重量,但是其自身具有的抗震性能不强,不能很好的保证建筑自身的安全。因此,在选择该结构时,要慎重考虑选择。
1.2不能出现独立的小墙肢
如果在建筑结构中出现独立墙肢,那么将会增加施工难度。在工程设计中,可以运用合并洞口、合理布置建筑剪力墙的方式,来消除独立墙肢,进而降低施工难度。
1.3保证剪力墙结构整体刚度力度
如果剪力墙结构刚度较大,那么其施工周期较短,地震力比较大,消耗施工材料多,不具有经济性。另外,由于地震力较大,将会导致墙肢、连梁超筋以及截面不能满足抗剪力的标准,加大截面设计的难度。
2.结构参数进行控制
为了有效的保证结构布置的科学合理性,需要对位移比、刚重比、侧向刚度比、层间位移角以及周期比等参数进行控制。其中,位移比指的是在高层建筑中,其竖向构件自身的层间位移、水平位移和本楼层平均值之间的比值。主要对结构布置自身具有的不规则性进行限值,能够防止出现大的偏心力,进而导致结构出现扭转效应。
3.剪力墙结构的计算和配筋
3.1剪力墙的墙身
剪力墙中包括的有竖向钢筋和水平向钢筋,在对其进行构造和计算时,要对其用量进行确定,主要对正截面中的抗弯承载力、斜截面中的抗剪承载力进行验算。剪力墙中的钢筋配置要求为:在一级、二级、三级的抗震设计中,竖向配筋率与水平配筋率不能低于0.25%;在四级、一级非抗震设计中,其配筋率不能低于0.2%。
3.2连梁
剪力墙自身只有具备了一定的强度和刚度,才能够保证墙体与连梁的协调工作。通常情况下,连梁具有提高剪力墙刚度、紧密连接墙肢的作用。因此,在对高层建筑结构整体进行计算的过程中,要相应的折减连梁的刚度。其折减值不能低于0.5,取值范围适宜控制在0.5~1.0。如果在对折减刚度后,建筑结构的正截面受弯承载力、斜截面受剪承载力不足,那么可以通过降低连梁高度、减小整体刚度的方式,来减少地震带来的影响。
四、结束语
高层建筑结构和剪力墙结构设计,受力情况较为复杂,应根据具体情况,确定结构计算模型及方法,并充分考虑结构的各种不利因素。
参考文献:
[1]郭兆伟.高层框架剪力墙结构抗震设计的技术要点分析[J].建材技术与应用,2011,01(11):39-40.
[2]师希望,林顺青.某高层框架—剪力墙结构设计要点的探讨[J].科学之友,2007,10(31):75-76.