Liftoff of a New Hovering Oscillating-wing Micro Aerial Vehicle

来源 :仿生工程学报:英文版 | 被引量 : 0次 | 上传用户:lanmei01
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Hovering ability forms the basis for space operations of Micro Aerial Vehicles(MAVs).The problem of uneven load puts high demands on the wing design.In this paper,a new hovering-mode for MAVs,inspired by flapping flight in bees and hummingbirds but using
其他文献
This paper proposes a new stochastic optimizer called the Colony Predation Algorithm(CPA)based on the corporate predation of animals in nature.CPA utilizes a ma
As a result of frequent food waste and environmental pollution,there has been an increasing demand for the development of packaging materials that intrinsically inhibit and reduce likelihood of non-Newtonian liquids adherence.In this work,inspired from ci
《普通高中数学课程标准(2017年版)》(以下简称《课标》)在学科核心素养中指出:“数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养.”“数学建模主要表现为:发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题.”《课标》给出了数学建模核心素养的三个具体要素:对现实问题进行数学抽象的素养、用数学语言表达问题的素养、用数学方法构建模型解决问题的素养.
With the explosive growth of the worlds population and the rapid increase in industrial water consumption,the worlds water supply has fallen into crisis.The shortage of fresh water resources has become a global problem,especially in arid regions.In na
商山四皓是超越历史事件本身的文史人物、文化符号和文化现象,具有儒、释、道多种内涵。他们所代表、所体现的无为而治的群体行为、汉承秦制的连接纽带、仕途遂顺的理想结局、进退有为的仁德典范等多是以诗词歌赋、绘画装饰等文艺方式传播的。历经两千年的演变,商山四皓已成为一种独特的文化符号。
解放思想是中国共产党推进党的事业和国家发展的锐利武器。自党成立之日起,我们党通过解放思想,突破了思想上的一系列禁锢,形成了实事求是的思想路线,为我们成功地战胜各种艰难险阻,取得革命、建设和改革的伟大成就奠定了坚实的思想基础。改革开放以来党的思想解放经历了五个阶段,分别形成了以“什么是马克思主义、怎样坚持和发展马克思主义”“什么是社会主义、怎样建设社会主义”“建设什么样的党、怎样建设党”“实现什么样的发展、怎样发展”“坚持和发展什么样的中国特色社会主义、怎样坚持和发展中国特色社会主义”为主题的五大思想解放运
夏甸金矿床位于胶西北金矿矿集区,成矿作用受区内招平断裂带控制。随着夏甸金矿床找矿工作向深部发展以及地质勘查资料的充分积累,定量化的成矿预测研究成为夏甸矿区深部找矿工作的重要突破点。文章采用面向深部找矿的隐伏矿体立体定量预测原理,基于多源勘查数据构建三维地质模型进行控矿地质因素的三维定量分析,获取反映成矿规律的成矿信息,以多元回归分析方法建立三维预测模型,并应用于夏甸金矿深部找矿。最终得出的相关三维模型和控矿地质因素能为成矿作用研究提供定量的数据支撑,圈定的立体找矿靶区对于夏甸矿区深部找矿具有重要意义。
一、个人的学术历程与20世纪80年代的知识氛围rn李娜(以下简称李):楼老师好,这次做“台港澳文学研究四十年”的学科回顾工作,非常高兴能跟您做这个访谈.您是大陆的台港文学研
期刊
我们知道离心率相同的两个椭圆,虽然大小不同,但椭圆的扁圆程度一样,类比于平面几何中三角形相似,我们称离心率相同的两个椭圆相似.那么离心率相同的两条双曲线是否相似,离心率都等于1的两条抛物线是否相似呢?由于双曲线和抛物线都是开放型曲线,要说明他们是否是相似的,我们需要引入“位似形”的概念.两个封闭图形是相似的,那么它们一定可以通过旋转、平移、反射变换变成位似图形.所以要证明两个开放图形相似,只要证明这两个图形在通过旋转、平移、反射变换后是位似的即可.
习近平总书记在2018年全国教育大会上指出:“人是科技创新最关键的因素,创新的事业呼唤创新的人才.我国要在科技创新方面走在世界前列,必须在创新实践中发现人才、在创新活动中培育人才、在创新事业中凝聚人才.”强调教育“要在增强综合素质上下功夫,教育引导学生培养综合能力,培养创新思维”.在实现中国梦的伟大实践中,培育和选拔早期创新人才已成为时代赋予基础教育的重要使命.