论文部分内容阅读
在激光二极管(LD)抽运腔内倍频Nd3+∶GdVO4/LBO深蓝456 nm激光器中,为对比激光晶体掺杂浓度对倍频输出功率的影响,利用同样尺寸为3 mm×3 mm×2 mm,稀土离子掺杂原子数分数分别为0.15和0.25的Nd3+∶GdVO4晶体作为对比。实验中利用同样长为20 mm的线性直腔,在使用10 mm长、按基频光为914 nm方向切割的Ⅰ类相位匹配倍频晶体LBO,在抽运功率为2.85 W时,前者获得了输出功率为105 mW的深蓝456 nm激光,明显高于后者。通过对准三能级激光晶体的最佳长度分析表明,掺杂原子数分数为0.15的Nd3+∶GdVO4晶体与0.25的相比,其实际长度更加接近于最佳长度。通过对倍频晶体LBO的最佳切割角和温度控制等分析表明,利用针对914 nm基频光切割的LBO晶体在912 nm激光器中,其切割角的差别可以通过温控的改变得到补偿。
In laser diode (LD) pumping cavity frequency doubling Nd3 +: GdVO4 / LBO dark blue 456 nm laser, in order to compare the laser crystal doping concentration on the double frequency output power, the same size of 3 mm × 3 mm × 2 mm , Nd3 +: GdVO4 crystals doped with rare earth ions with atomic numbers of 0.15 and 0.25, respectively, as a comparison. In the experiment, a linear cavity with the same length of 20 mm was used. In the case of LBO, a type I phase-locked multiplier crystal with a length of 10 mm and a fundamental frequency of 914 nm, the former was obtained at pumping power of 2.85 W Dark blue 456 nm laser with 105 mW output was significantly higher than the latter. The optimal length of the aligned three-level laser crystal shows that the actual length of Nd3 +: GdVO4 with doping number of 0.15 is closer to the optimal length than that of 0.25. The analysis of the optimal slicing angle and temperature control of the double frequency crystal LBO shows that the difference of the slicing angle can be compensated by the change of the temperature control in the 912 nm laser using the LBO crystal cut at 914 nm.