论文部分内容阅读
合成了(La0.8M0.2)MnO3(M=Ca2+,Sr2+,Ba2+)和(La0.8Sr0.2)(Mn1-xFex)O3(x=0.1、0.2、0.3、0.4、0.5)两类氧化物,经XRD确认为钙铁矿型氧化物,应用FT-IR对其进行研究,对主要的红外特征振动υ(Mn-O)和δ(O-Mn-O)进行分析表征。这类化合物的υ(Mn-O)和δ(O-Mn-O)的FT-IR特征吸收峰十分相似,但在~608cm-1处出现较大差别,以Sr2+、Ca2+和Ba2+部分A位取代La3+的钙铁矿型氧化物和B位Fe取代Mn时,由于离子的溶解能不同,对晶格的有序排列的影响程度不一,导致了Mn-O键的键力场不同,引起了吸收峰向低波数移动。这种结构上的差异,导致对汽车尾气中的有害成份碳氢化合物(HC)和一氧化碳(CO)的催化氧化能力降低。借此可以用于研究结构与催化性能的关系。
(La0.8M0.2) MnO3 (M = Ca2 +, Sr2 +, Ba2 +) and (La0.8Sr0.2) (Mn1-xFex) O3 (x = 0.1, 0.2, 0.3, 4,0.5). Two kinds of oxides were confirmed by XRD as perovskite oxides. FT-IR was used to study the main infrared characteristic vibrations υ (Mn-O) and δ (O-Mn- O) for analysis and characterization. The FT-IR characteristic peaks of υ (Mn-O) and δ (O-Mn-O) of these compounds are very similar, but there is a big difference at ~ 608cm-1. Substitution of the La3 + perovskite oxide and B-Fe for the Mn results in different degrees of lattice-order alignment due to the different ion solubilities, resulting in different bond fields for the Mn-O bond, resulting in The absorption peak shifts to low wavenumbers. This structural difference leads to a reduction in the catalytic oxidation of the harmful components, hydrocarbons (HC) and carbon monoxide (CO), in the exhaust of vehicles. This can be used to study the relationship between structure and catalytic performance.