论文部分内容阅读
针对现有的方法不能有效用于图像大数据分类的问题,提出了一种基于MapReduce编程模型的图像分类方法,在分类的全过程利用MapReduce机制加速分类过程。首先,利用MapReduce机制实现对图像尺度不变特征变换(SIFT)特征的分布式提取,并通过稀疏编码将其转换为稀疏向量,生成图像的稀疏特征;然后,利用MapReduce机制实现对随机森林的分布式训练;在此基础上,利用MapReduce机制对图像集实现基于随机森林方法的并行分类。通过在Hadoop平台的实验结果表明,该方法能够充分利用MapRe