论文部分内容阅读
摘 要:小学数学教学的目标不仅仅是教会学生知识,更重要的是要训练学生思维、发展学生智力、培养学生能力,培养出会思维、会学习、会创造的学生。
关键词:启迪;数学;思维;培养;智慧;看法
古人说:“学贵知疑,小疑则小进,大疑则大进”,有疑问才有学习的内动力。人类的思维活动往往是由于要解决当前的问题而引发的。课堂上要让学生思,必先教有疑。现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学。如何在数学教学中培养学生的思维能力,是教学改革的一个重要课题。下面就笔者在数学教学中,数学思维能力的培养方面,谈谈自己的看法。
一、激发学生的学习兴趣,启迪学生的思维
1、用实践操作唤起学生的兴趣
教师在教学实践中动手操作或让学生自己动手操作,最能唤起学生的兴趣,保持学生稳定的注意力。如在推导圆柱体的体积公式时,我通过让学生自己推导将一个圆柱体拼割成一个近似的长方体,并让学生掌握了圆柱体的体积公式后,我要求学生认真观察教师的推导过程,并让学生观察将一个圆柱体拼割成一个近似的长方体后,这个近似的长方体的体积、表面积同原来的圆柱体的体积及表面积相比是否发生变化。
2、让学生在实践中提高学习兴趣并获得知识
在小学数学教学中让学生进行实践是有效提高课堂教学的一种重要手段。如教学了行程问题后,我出示了这样一题:“ 已知客车每小时行60千米,货车每小时行50千米。现在两车同时从相距200千米的甲、乙两地同时出发,经过2小时两车相距多少千米?”
由于题中未说明行驶方向,所以两车出发2小时,两车相距的路程应是多少并无一个标准,因此,我组织两个学生在教室中按四种情况进行了演示:1、两个学生同时相向而行;2、两个同学同时相背而行;3、两个学生同时向同一方向而行,走得快的同学在前;4、两个学生同时向同一方向而行,走得慢的同学在前。因此我再启发学生,这道题应该如何进行解答。这样,学生很快到,这道题应分以下四种情况进行讨论:
(1)、两车同时相对而行,相遇后又拉开距离:(60+50)×2-200=20(千米)
(2)、两车同时相背而行:(60+50)×2+200=420(千米)
(3)、两车同向而行,客车在前面货车在后面:60×2+200-50×2=220(千米)
(4)、两车同向而行,货车在前面客车在后面:50×2+200-60×2=180(千米)
二、善于运用启发法和发现法,调动学生思维的积极性
如教材中的“圆的认识”一课时,教师首先要学生拿出一张圆形纸片,让他们将圆纸片对折打开,再对折再打开,如此多次,让学生观察在圆纸片上看到了什么?学生精力陡然集中,都想看看圆纸片上有什么?一生发现:圆纸片上有折痕。另一生又发现:圆纸片上有无数条折痕。老师表扬两生观察仔细。其它学生倍受鼓舞,纷纷发言:圆面上所有折痕相交于一点;折痕两旁的图形完全重合。这时,老师让学生打开课本,看一看交点叫什么?折痕叫什么?学生很快找到了答案并熟记。
三、巧设探索性问题,培养学生创新思维
在教学实践中,我们如能让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,学生也会品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,会真正体会到学习数学的乐趣。因此,在教学实践中,我尽量做到在数学教学过程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系与区别。
1、设计开放性习题,让学生在实践中提高创新思维。
如在教学了百分数应用题后,我出示了这样一题:张教老师欲购买一台笔记本电脑,为了尽可能少花钱,他考察了A、B、C三个商场,他想购买的笔记本电脑三个商场都有,且标价都有是9980元,不过三个商场的优惠方法各不相同,具体如下:
A商场:全场九折
B商场:购物满1000元送100元
C商场:购物满1000元九折,满10000元八八折
张老师应该到哪个商场去购买电脑?请说明理由?
去A商场购电脑,付:9980×90%=8982(元)
B商场只买电脑,需付:9980-900=9080(元);再买其它的物品凑满10000元,需付:10000-1000=9000(元)。
C商场购买电脑时,只要再多买20元物品,即凑满10000元,最多需付:10000×88%=8800(元)。
因此,张老师去C商场购电脑花钱最少。
2、培养学生打破传统的思维模式,开启学生创新思维大门
创新思维的培养,要让学生敢于打破传统的思维模式,对一些问题提出具有独特的、富有说服力的新观点和新境界,开启学生的创新思维大门。
如教学了“长方体和正方体的体积”后,我出示了这样一题:“一个长方体水箱,从里面量,长40厘米,宽25厘米,高20厘米,箱中水面高10厘米。如果在长方体水箱中放进一个长和高都为20厘米,宽为10厘米的长方体铁块,那么水面将上升多少厘米?
铁块全部浸没在水中,这时候水面上升的高度即为:20×20×10÷(40×25)=4(厘米)。另一种情况,即不是将20×20作为底面,而是以20×10作为底面放进水箱中。这时候铁块没有全部浸没在水中,这时水面上升的高度应该为:
40×25×10÷(40×25-20×10)-10=2.5(厘米)
总之,在小学数学教学中,可采用多种多样的方法激发学生的兴趣,启迪学生的思维,培养学生分析问题与解答问题的能力,为学生创设宽松、民主、丰富多采的创新气氛,引导学生自己发现问题,进行创造性学习,培养创新思维。
关键词:启迪;数学;思维;培养;智慧;看法
古人说:“学贵知疑,小疑则小进,大疑则大进”,有疑问才有学习的内动力。人类的思维活动往往是由于要解决当前的问题而引发的。课堂上要让学生思,必先教有疑。现代教育观点认为,数学教学是数学活动的教学,即思维活动的教学。如何在数学教学中培养学生的思维能力,是教学改革的一个重要课题。下面就笔者在数学教学中,数学思维能力的培养方面,谈谈自己的看法。
一、激发学生的学习兴趣,启迪学生的思维
1、用实践操作唤起学生的兴趣
教师在教学实践中动手操作或让学生自己动手操作,最能唤起学生的兴趣,保持学生稳定的注意力。如在推导圆柱体的体积公式时,我通过让学生自己推导将一个圆柱体拼割成一个近似的长方体,并让学生掌握了圆柱体的体积公式后,我要求学生认真观察教师的推导过程,并让学生观察将一个圆柱体拼割成一个近似的长方体后,这个近似的长方体的体积、表面积同原来的圆柱体的体积及表面积相比是否发生变化。
2、让学生在实践中提高学习兴趣并获得知识
在小学数学教学中让学生进行实践是有效提高课堂教学的一种重要手段。如教学了行程问题后,我出示了这样一题:“ 已知客车每小时行60千米,货车每小时行50千米。现在两车同时从相距200千米的甲、乙两地同时出发,经过2小时两车相距多少千米?”
由于题中未说明行驶方向,所以两车出发2小时,两车相距的路程应是多少并无一个标准,因此,我组织两个学生在教室中按四种情况进行了演示:1、两个学生同时相向而行;2、两个同学同时相背而行;3、两个学生同时向同一方向而行,走得快的同学在前;4、两个学生同时向同一方向而行,走得慢的同学在前。因此我再启发学生,这道题应该如何进行解答。这样,学生很快到,这道题应分以下四种情况进行讨论:
(1)、两车同时相对而行,相遇后又拉开距离:(60+50)×2-200=20(千米)
(2)、两车同时相背而行:(60+50)×2+200=420(千米)
(3)、两车同向而行,客车在前面货车在后面:60×2+200-50×2=220(千米)
(4)、两车同向而行,货车在前面客车在后面:50×2+200-60×2=180(千米)
二、善于运用启发法和发现法,调动学生思维的积极性
如教材中的“圆的认识”一课时,教师首先要学生拿出一张圆形纸片,让他们将圆纸片对折打开,再对折再打开,如此多次,让学生观察在圆纸片上看到了什么?学生精力陡然集中,都想看看圆纸片上有什么?一生发现:圆纸片上有折痕。另一生又发现:圆纸片上有无数条折痕。老师表扬两生观察仔细。其它学生倍受鼓舞,纷纷发言:圆面上所有折痕相交于一点;折痕两旁的图形完全重合。这时,老师让学生打开课本,看一看交点叫什么?折痕叫什么?学生很快找到了答案并熟记。
三、巧设探索性问题,培养学生创新思维
在教学实践中,我们如能让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,学生也会品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,会真正体会到学习数学的乐趣。因此,在教学实践中,我尽量做到在数学教学过程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系与区别。
1、设计开放性习题,让学生在实践中提高创新思维。
如在教学了百分数应用题后,我出示了这样一题:张教老师欲购买一台笔记本电脑,为了尽可能少花钱,他考察了A、B、C三个商场,他想购买的笔记本电脑三个商场都有,且标价都有是9980元,不过三个商场的优惠方法各不相同,具体如下:
A商场:全场九折
B商场:购物满1000元送100元
C商场:购物满1000元九折,满10000元八八折
张老师应该到哪个商场去购买电脑?请说明理由?
去A商场购电脑,付:9980×90%=8982(元)
B商场只买电脑,需付:9980-900=9080(元);再买其它的物品凑满10000元,需付:10000-1000=9000(元)。
C商场购买电脑时,只要再多买20元物品,即凑满10000元,最多需付:10000×88%=8800(元)。
因此,张老师去C商场购电脑花钱最少。
2、培养学生打破传统的思维模式,开启学生创新思维大门
创新思维的培养,要让学生敢于打破传统的思维模式,对一些问题提出具有独特的、富有说服力的新观点和新境界,开启学生的创新思维大门。
如教学了“长方体和正方体的体积”后,我出示了这样一题:“一个长方体水箱,从里面量,长40厘米,宽25厘米,高20厘米,箱中水面高10厘米。如果在长方体水箱中放进一个长和高都为20厘米,宽为10厘米的长方体铁块,那么水面将上升多少厘米?
铁块全部浸没在水中,这时候水面上升的高度即为:20×20×10÷(40×25)=4(厘米)。另一种情况,即不是将20×20作为底面,而是以20×10作为底面放进水箱中。这时候铁块没有全部浸没在水中,这时水面上升的高度应该为:
40×25×10÷(40×25-20×10)-10=2.5(厘米)
总之,在小学数学教学中,可采用多种多样的方法激发学生的兴趣,启迪学生的思维,培养学生分析问题与解答问题的能力,为学生创设宽松、民主、丰富多采的创新气氛,引导学生自己发现问题,进行创造性学习,培养创新思维。