论文部分内容阅读
从业务需求出发,提出了面向气候模式产品释用的神经网络。选用主分量作为网络的输入和输出,大大减少了其节点数,重点突出了大尺度影响变化关系,提高了实际预测的稳定性;用全局寻优的遗传算法取代经典BP算法,为高质量的网络学习训练提供了保证;针对实际设计代价函数,保证了网络学习训练能适应气候模式产品释用的基本要求,学习目的更明确,针对性更强。分别以夏季(6~8月)NCEP/NCAR500 hPa高度场、国家气候中心海气耦合模式500hPa高度预测场主分量为外界输入信号,同期中国降水场、华中区域降水场主分量为网络输出