论文部分内容阅读
在煤矿井下实际工况中,由于开采煤层的起伏,采煤机作业常伴随着噪声干扰以及工作载荷突变的情况,所以采集到的采煤机故障振动信号是非常复杂的,往往掺杂噪声信号的干扰。如何从原始信号中提取到有用的特征信息成为了井下设备故障诊断的研究难点。这种情况下难以直接使用一维振动信号进行滚动轴承故障诊断,提出了基于振动图像和动态卷积神经网络(DCNN)的采煤机滚动轴承故障诊断模型,将DCNN对于图像识别的高性能引入采煤机轴承的故障诊断中。测试实验结果表明,该故障诊断模型可实现对滚动轴承多种故障模式的特征分类,验证了该方