论文部分内容阅读
针对传统波达方位(DOA)估计算法在低信噪比下定位误差大的问题,提出基于稀疏堆叠降噪自编码器深层神经网络的语音DOA估计算法。该算法将阵列协方差矩阵上三角阵作为DOA估计特征输入到稀疏堆叠降噪自编码器进行预训练,采取迁移学习策略将训练得到的最优权重作为深度神经网络的初始权重,提高网络的抗噪性、泛化性和收敛速度。仿真与实验结果表明,与传统DOA估计算法相比,该算法在低信噪比情况下定位误差小、准确度高。