O2-O2云反演算法及其在TROPOMI上的应用

来源 :遥感学报 | 被引量 : 5次 | 上传用户:wangxiaomax
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用遥感技术对大气环境污染进行监测时,云是影响痕量气体反演精度的重要因素,因此在痕量气体反演中需要对云的影响进行校正,通常使用的云参数主要是有效云量和云压。本文基于O_2-O2477 nm吸收波段构建了O_2-O_2云反演算法:首先,根据有效云量和云高与连续反射率和O_2-O_2斜柱浓度之间的对应关系,结合假定的云模型利用VLIDORT辐射传输模型建立关于有效云量和云压的查找表;然后,通过差分吸收光谱技术拟合卫星载荷观测的大气层顶辐射,获得O_2-O_2斜柱浓度并计算连续反射率;最后,结合辅助数据,
其他文献
植被光合有效辐射吸收比率FPAR (Fraction of absorbed Photosynthetically Active Radiation)反映了植被冠层的光学特性,是表征植被光合作用水平和生长状态的重要参量,因此成为全球变化研究中多种过程模型的重要输入参数。随着定量遥感研究的深入和新型传感器的使用,从区域到全球尺度上的FPAR遥感估算方法不断提出,多样化的遥感FPAR产品越来越多地应用
利用小型无人机进行遥感图像配准在自然灾害损害评估、环境监测和目标检测与追踪等领域发挥着至关重要的作用,但小型无人机的图像采集过程容易受风速/风向、复杂地形、电池容量、飞行姿态、飞行高度等自然或人为因素的影响。这些问题通常会导致捕捉到的场景重叠率低与图像非刚性畸变,在特征点提取过程中产生大量冗余点,增加了图像配准的难度。本文提出一种基于特征点的小型无人机图像配准方法,该方法的核心思想是在配准过程中识
利用极化合成孔径雷达(PolSAR)能够实现地物的识别和分类,而多时相全极化SAR可以获取地物更多的散射特征,提升地物识别精度,但高维散射特征的引入会带来严重的维数灾难问题。为了实现对高维散射特征的有效降维,本文提出一种基于栈式稀疏自编码网络S-SAE(Stacked Sparse AutoEncoder)的多时相PolSAR散射特征降维方法。该方法首先对PolSAR数据进行极化目标分解以获取高维
大气细颗粒物(PM_(2.5))质量浓度是重要的空气质量指标之一。为了促进区域PM_(2.5)浓度监测的研究,同时拓展利用CE318太阳光度计等光学传感器反演的大气气溶胶产品的应用领域,本文首先基于北京地区2014年—2017年大气气溶胶反演的粒径尺度谱分布产品,计算表征PM_(2.5)的粒子体积,并结合同一时间北京地区35个空气质量站点提供的PM_(2.5)质量浓度参考值计算转换系数,对样本区间