论文部分内容阅读
针对传统交通事故风险预测算法无法自动判别数据特征,且模型表达能力差等问题。该文提出一种基于深度学习的车联边缘网络交通事故风险预测算法,该算法首先针对车载自组织网络中采集的大量交通数据,采用边缘服务器中建立的卷积神经网络自主提取多维特征,经归一化、去均值等预处理后,再将得到的新变量输入卷积层、采样层进行训练,最后根据全连接层输出的判别值,得到模拟预测交通事故发生的风险性。仿真结果表明,该算法被验证能够预测交通事故发生的风险性,较传统的机器学习算法BP神经网络、逻辑回归具有更低的损失与更高的预测准确度。