论文部分内容阅读
摘 要:数学思想是数学的灵魂,数学方法是使这一灵魂得以展现的途径。在初中数学教学过程中,要用数学思想指导基础知识教学,在基础知识教学中培养思想方法。因为数学思想方法的教学是学生形成良好的认知结构的纽带,是由知识转化为能力的桥梁,是培养数学意识、形成优良思维素质的关键。
关键词:数学教育 数学思想 渗透
新课标提出:“初中数学的基础知识主要是代数几何中的性质概念、法则公式、公理定理以及由其深层次内容所反映出来的数学思想和方法”。这表明,数学思想和数学教学方法在本质上是相互连接的,在教学中数学思想时刻都能得到体现和运用。
一、渗透数学思想,首要培养自主学习的目标
由于数学思想的存在,使得数学知识不是孤立的学术知识点,不能用刻板的套路解决各种不同的数学问题,只有充分理解掌握数学思想在各种问题上的运用,才能更有效地把知识运用得更加灵活。由此可见,要培养学生的数学能力,就必须重视数学思想和方法的训练,培养自主学习的能力,使得学生更容易理解和更容易记忆数学知识,让学生领会特定的事物本质属性,借助于基本的数学思想和方法理解可能遇到的其他类似问题,有效促进学生数学思维能力的发展。
现代数学教育理论认为,数学不是教出来的,更不是简单地模仿出来的,而是靠学生自主探索研究出来的。要让学生掌握数学思想和方法,应将数学思想和方法的训练视作教学内容的一个有机组成部分,而且不能脱离内容形式去进行孤立地传授。在数学课上要充分发挥学生的主体作用,让学生自己主动地去建构数学知识。初中数学教学的目的不仅要求学生掌握数学的基础知识和基本技能,更重要的是发展学生的能力,使学生形成优良思维素质。这对激发学生的创造思维,形成数学思想,掌握数学方法的作用是不可低估的。
二、函数思想的应用
古典函数概念的定义由德国数学家迪里赫勒1873 年提出。函数就是一门研究两个变量之间相互依赖、相互制约的规律。在初中数学教学中,函数的思想是数学中处理常量与变量的最常见也是最重要的思想之一,可以说是一项极为重要的内容。
对—个较为复杂的问题,常常只需寻找等量关系,列出—个或几个函数关系式,就能很好地得到解决。例如,当矩形周长为20cm 时,长和宽可以如何取值?面积各是多少?其中哪个面积最大?可以设矩形的长为x,宽为y。面积为S,然后慢慢寻找规律。得出矩形周长一定时,矩形的长是宽的一次函数,面积是长的二次函数,当长与宽相等时矩形就变成了正方形,而此时面积最大为16cm2。
三、数形结合思想的应用
数形结合不仅使几何问题获得了有力的代数工具,同时也使许多代数问题具有了显明的直观性。把代数式的精确刻画与几何图形的直观描述相结合,使代数与几何问题相互转化,使抽象思维和形象思维有机结合,是初中数学中十分重要的思想。应用数形结合思想,就是将数量关系和空间形式巧妙结合在数学问题的解决中,具有数学独特的策略指导与调节作用。数是形的抽象概括,形是数的几何表现,两者其实紧密结合,以此来寻找解题思路,可以使问题得到更完善的解决。
例如,二元一次方程组的图像解法,把数量关系问题转化为图形性质:A,B 两地之间修建一条l 千米长的公路,C 处是以C点为中心,方圆50 千米的自然保护区,A 在C 西南方向,B在C的南偏东30 度方向,问公路AB 是否会经过自然保护区?
四、化归转换思想的应用
所谓化归,即转化与归结的意思,就是把面临的待解决或未解决的问题归结为熟悉的规范性问题,或简单易解决的问题,或已解决了的问题。人们解决问题都自觉不自觉地用到化归的思想,这是一种知识的迁移。在整个初中数学中,化归思想一直贯穿其中。从这个意义上讲,人类知识向前演进的过程中,也都是化新知识为旧知识,化未知为已知的過程。因此,化归是一种具有广泛的、普遍性的、深刻的数学思想,也是解决数学问题的有效策略,它在数学教学中也显示了巨大的作用。
例如,对于整式方程(如一元一次方程、一元二次方程),人们已经掌握了等式的基本性质、求根公式等理论。因此,求解整式方程的问题就是规范问题,而把有关分式方程去分母转化为整式方程的过程,就是问题的规范化,实现了“化归”。
由此可见,数学思想在初中数学教学中起着重大的作用,对于抓好双基,培养学生的数学素质以及能力都具有十分重要的作用,这对老师也提出了更高的要求。
参考文献:
[1]许鸣峰.中学数学思想方法及其教学研究[D].南京师范大学 2004
[2]胡典顺.论数学思想方法在中学数学教学中的渗透[D].华中师范大学 2001
[3]张润.中学数学中的数学思想方法研究与渗透[D].内蒙古师范大学 2005
关键词:数学教育 数学思想 渗透
新课标提出:“初中数学的基础知识主要是代数几何中的性质概念、法则公式、公理定理以及由其深层次内容所反映出来的数学思想和方法”。这表明,数学思想和数学教学方法在本质上是相互连接的,在教学中数学思想时刻都能得到体现和运用。
一、渗透数学思想,首要培养自主学习的目标
由于数学思想的存在,使得数学知识不是孤立的学术知识点,不能用刻板的套路解决各种不同的数学问题,只有充分理解掌握数学思想在各种问题上的运用,才能更有效地把知识运用得更加灵活。由此可见,要培养学生的数学能力,就必须重视数学思想和方法的训练,培养自主学习的能力,使得学生更容易理解和更容易记忆数学知识,让学生领会特定的事物本质属性,借助于基本的数学思想和方法理解可能遇到的其他类似问题,有效促进学生数学思维能力的发展。
现代数学教育理论认为,数学不是教出来的,更不是简单地模仿出来的,而是靠学生自主探索研究出来的。要让学生掌握数学思想和方法,应将数学思想和方法的训练视作教学内容的一个有机组成部分,而且不能脱离内容形式去进行孤立地传授。在数学课上要充分发挥学生的主体作用,让学生自己主动地去建构数学知识。初中数学教学的目的不仅要求学生掌握数学的基础知识和基本技能,更重要的是发展学生的能力,使学生形成优良思维素质。这对激发学生的创造思维,形成数学思想,掌握数学方法的作用是不可低估的。
二、函数思想的应用
古典函数概念的定义由德国数学家迪里赫勒1873 年提出。函数就是一门研究两个变量之间相互依赖、相互制约的规律。在初中数学教学中,函数的思想是数学中处理常量与变量的最常见也是最重要的思想之一,可以说是一项极为重要的内容。
对—个较为复杂的问题,常常只需寻找等量关系,列出—个或几个函数关系式,就能很好地得到解决。例如,当矩形周长为20cm 时,长和宽可以如何取值?面积各是多少?其中哪个面积最大?可以设矩形的长为x,宽为y。面积为S,然后慢慢寻找规律。得出矩形周长一定时,矩形的长是宽的一次函数,面积是长的二次函数,当长与宽相等时矩形就变成了正方形,而此时面积最大为16cm2。
三、数形结合思想的应用
数形结合不仅使几何问题获得了有力的代数工具,同时也使许多代数问题具有了显明的直观性。把代数式的精确刻画与几何图形的直观描述相结合,使代数与几何问题相互转化,使抽象思维和形象思维有机结合,是初中数学中十分重要的思想。应用数形结合思想,就是将数量关系和空间形式巧妙结合在数学问题的解决中,具有数学独特的策略指导与调节作用。数是形的抽象概括,形是数的几何表现,两者其实紧密结合,以此来寻找解题思路,可以使问题得到更完善的解决。
例如,二元一次方程组的图像解法,把数量关系问题转化为图形性质:A,B 两地之间修建一条l 千米长的公路,C 处是以C点为中心,方圆50 千米的自然保护区,A 在C 西南方向,B在C的南偏东30 度方向,问公路AB 是否会经过自然保护区?
四、化归转换思想的应用
所谓化归,即转化与归结的意思,就是把面临的待解决或未解决的问题归结为熟悉的规范性问题,或简单易解决的问题,或已解决了的问题。人们解决问题都自觉不自觉地用到化归的思想,这是一种知识的迁移。在整个初中数学中,化归思想一直贯穿其中。从这个意义上讲,人类知识向前演进的过程中,也都是化新知识为旧知识,化未知为已知的過程。因此,化归是一种具有广泛的、普遍性的、深刻的数学思想,也是解决数学问题的有效策略,它在数学教学中也显示了巨大的作用。
例如,对于整式方程(如一元一次方程、一元二次方程),人们已经掌握了等式的基本性质、求根公式等理论。因此,求解整式方程的问题就是规范问题,而把有关分式方程去分母转化为整式方程的过程,就是问题的规范化,实现了“化归”。
由此可见,数学思想在初中数学教学中起着重大的作用,对于抓好双基,培养学生的数学素质以及能力都具有十分重要的作用,这对老师也提出了更高的要求。
参考文献:
[1]许鸣峰.中学数学思想方法及其教学研究[D].南京师范大学 2004
[2]胡典顺.论数学思想方法在中学数学教学中的渗透[D].华中师范大学 2001
[3]张润.中学数学中的数学思想方法研究与渗透[D].内蒙古师范大学 2005