论文部分内容阅读
为了探讨涡流二极管涡腔倒角对其流动性能的影响规律,利用计算流体力学方法(Computational Fluid Dynamics,CFD)对4种具有不同高度涡腔倒角的涡流二极管进行了正反向流动的数值模拟,正向流动采用标准k-ε湍流模型,反向流动采用RNG(Renormalization Group)k-ε湍流模型。结果表明,相较于标准结构,其余三种高度的涡腔倒角在较高雷诺数下都可以降低正向流动阻力,但同时也会降低反向流动阻力。其中,高度为3/4涡腔高度的倒角结构,可以最大程度地降低正向流动阻力,同时对反向流动阻力的影响最小,对涡流二极管性能的提高效果最为显著。数值模拟所得结论可为涡流二极管的优化设计提供参考依据。
In order to investigate the influence of eddy current chamfering on the flow performance of the eddy current diode, numerical simulation of the forward and reverse flow of eddy current diodes with four chamfered chamfers with different heights is performed by Computational Fluid Dynamics (CFD) , The standard k-ε turbulence model is used for forward flow, and the k-ε turbulence model is used for reverse flow. The results show that at the higher Reynolds numbers, the chamfer of the other three heights can reduce the forward flow resistance compared with the standard structure, but also reduce the reverse flow resistance. Among them, the height of 3/4 volute cavity chamfering structure, can minimize the forward flow resistance, while the reverse flow resistance of the smallest, the performance of the eddy current diode to enhance the most significant effect. The numerical simulation results can provide a reference for the optimal design of eddy current diodes.