论文部分内容阅读
为了提高网络流量的预测精度,提出了一种混沌粒子群算法优化相空间重构和神经网络的网络流量预测模型(CPSO-BPNN)。利用混沌粒子群算法对BP神经网络初始参数、延迟时间、嵌入维数进行优化,根据延迟时间、嵌入维数对网络流量数据进行重构,BP神经网络根据初始参数进行训练建立网络流量预测模型,通过仿真实验对模型性能进行测试。结果表明,CPSO-BPNN可以准确描述网络流量的复杂变化趋势,提高了网络流量的预测精度。