论文部分内容阅读
传统头饰图片识别方法的特征点由研究人员手工提取,工作量大且准确率低,识别系统存在预处理步骤繁琐、样本要求高等缺点。针对上述问题,文中通过构建卷积神经网络从大量图片数据中自动学习头饰图片的深层特征。文中的CNN模型选用稀疏性较好的Re LU激活函数调整输出,利用反向传播算法(BP算法)优化网络参数,在训练得到的CNN模型后接Softmax分类器进行识别。实验结果表明,系统对头饰图片测试集的识别率达到96. 25%,具有良好的识别准确率和识别效率。