基于卷积神经网络的少数民族头饰识别

来源 :电子科技 | 被引量 : 0次 | 上传用户:daren19112879
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统头饰图片识别方法的特征点由研究人员手工提取,工作量大且准确率低,识别系统存在预处理步骤繁琐、样本要求高等缺点。针对上述问题,文中通过构建卷积神经网络从大量图片数据中自动学习头饰图片的深层特征。文中的CNN模型选用稀疏性较好的Re LU激活函数调整输出,利用反向传播算法(BP算法)优化网络参数,在训练得到的CNN模型后接Softmax分类器进行识别。实验结果表明,系统对头饰图片测试集的识别率达到96. 25%,具有良好的识别准确率和识别效率。
其他文献
句子的谓语动词在人称和数上必须和主语一致是英语句法最基本的规则之一,也是学习者在英语写作中必须掌握的重要原则,具体体现在八个方面.
黑木耳作为一种胶质食用菌,富含多种营养物质,其中多糖是其中所占比重最大、含量最高的功能性成分之一。针对黑木耳多糖的分类,区别于传统的化学方法检测操作复杂、检测速度
CFSFDP算法是一种基于密度的新型聚类算法。文中针对算法需使用决策图人工选取聚类中心点的问题,利用斜率思想找出聚类中心点与非聚类中心点间的分界点,在消除主观误差的同时
针对传统局部匹配支持窗难以利用空间、灰度距离远的像素信息的问题,提出一种基于视差和灰度的双层支持窗立体匹配算法。该算法根据视差图获得第一层视差支持窗,在视差支持窗内配合参考图RGB颜色灰度值获得灰度相似子支持窗;随后以视差窗、灰度窗、中心像素为优化路径,通过类动态规划算法优化聚合匹配代价;最后采用WTA策略选取最佳视差,更新所有视差,并不断迭代优化视差图直到视差收敛。经过Middlebury平台的