论文部分内容阅读
提出一种适用于“货到人”智能机器人系统的订单排序模型,通过优化订单拣选顺序,增加拣选台内相邻订单和拣选台之间订单的共用货架数量,减少货架的搬运次数,提高货架的出入库效率.把订单的排序看作旅行商问题(travelling salesman problem,TSP),并用改进K-Means聚类算法求解该订单排序模型.选取3组不同批次订单进行仿真验证,优化后系统货架搬运次数平均减少35.63%.