论文部分内容阅读
分类思想是一种基本的数学思想。它是根据一定的标准,对事物进行有序划分和组织的过程。关于分类思想的具体作用,强振宇、杨磊认为当知识积累到一定的程度就需要运用分类、归纳的思想来帮助学生建构自己的知识网络,以及能够增强思维的缜密性和提高解题的能力。郑毓信认为分类能够为相应的抽象提供必要的基础和为如何逐步深入地去开展认识指明可能的途径。
一、小学数学分类思想的意义
分类能力的发展反映了学生思维发展,特别是概括能力的发展水平。它既是学生逻辑思维能力发展的重要方面,又对促进学生逻辑思维能力的发展具有重要作用。
1、为数学抽象提供必要的基础。
分类需要对客观事物进行分析、比较,并抽象概括出事物的一般特点与本质属性。具体来说,儿童需先具体地判断对象的相同与不同之处,将某些对象看成同类或将一些东西看成同类(归类),即主要集中于对象的某个(些)特征,并认为是这些事物的共性所在,而对其他一些属性暂不考虑。也就是说分类思想的一个重要作用就是为相应的数学抽象提供了必要的基础。
2、为深入认识指明可能的途径。
如果说归类主要突出了事物的共同点,那么,不同类别的分类的作用就是为如何逐步深入地去开展认识指明了可能的途径,从这一角度我们可以重新来理解对三角形进行分类的意义,即为什么将三角形区分为直角三角形和非直角三角形(锐角和钝角三角形)、等腰三角形和非等腰三角形。因为这就为我们按照由特殊到一般地深入研究三角形提供了可能的途径。
3、为达到高级思维奠定基础。
加涅的智慧技能的学习过程和条件的层级关系是:辨别→(以辨别为条件)具体概念→(以具体性概念为条件)概念→(以定义性概念为条件)规则→(以规则为条件)高级规则,由于分类活动往往涉及到辨别,因此学习往往可以从分类开始,然后在基础上抽象为具体概念和定义性概念,最后为形成规则和高级规则奠定思维基础。
4、形成完善合理的知识结构。
分类往往是为了建立一定的序,因此知识积累到一定程度,运用分类思想能够帮助学生有条理、有顺序,并且不重复、不遗漏地归纳整理知识,形成完善合理的知识网络图。学习心理学的研究表明,良好的知识结构对于提取知识和解决问题是十分重要的。
5、发展儿童的组织策略。
组织策略即根据知识经验之间的内在关系,对学习材料进行系统、有序的分类、整理与概括,使之结构合理化。应用组织策略可以对学习材料进行深入的加工,进而促进对所学内容的理解与记忆。可见学会分类是发展组织策略的重要前提。研究表明,小学中低段儿童虽然不能自发地产生和运用组织策略,却能通过一段策略训练后学会使用组织策略。通过数学学习渗透分类思想后,可以发展儿童的组织策略,并迁移到其他学科的学习中去。
二、小学数学分类思想的教学策略
分类思想贯穿整个小学数学阶段,教师要挖掘教材中隐含的分类思想,向学生渗透分类思想。例如,教材在一年级通常安排将生活中的事物进行分类,体会按不同标准分类,结果不同;认识物体时,将长方体、正方体、圆柱和球进行分类……教师在教学时可以采取以下策略:
1、用分类活动引入新知识。
从学习心理学角度来看,在低年段往往通过设置具体的分类活动,使学生通过概念形成,达到不严格的具体性概念阶段。如在“认识三角形和四边形”时,可以出示点子图,根据图形是否为封闭图形分为封闭和不封闭图形;在封闭图形中,根据图形有几条线段围成的,分为三角形、四边形、五边形三类。
到了中高年段,则可以适时地根据学生的思维能力来逐渐地通过概念同化形成定义性概念,从而促进学生的抽象思维发展水平。如在引入平行线的概念时,不少是通过日常生活中的具体事例介绍,再经抽象概括形成“平行线”的概念。因此,可以通过让学生将同一平面内两条线段的关系进行分类,得到有交点和没有交点的两种情况,从而认识同一平面内的两条直线只有有交点和没有交点的两种位置关系,这就为通过概念同化来定义平行线做好了充分的铺垫。
2、用分类思想归纳整理知识。
当知识积累到一定程度往往需要用分类来归纳所学的知识,到了中高年级尤其如此,因此需要学生掌握合理的分类方法,满足互斥、无遗漏、最简便的原则,以形成完善合理的知识网络。
在小学阶段,学生需要掌握的内容,根据数学分类的方法常有以下几种:(1)根据数量特征和数量关系进行分类。如整数、小数、分数的分类,运算法则的分类,等等。(2)根据图形的特征或相互间的关系进行分类。如三角形按角分类,有锐角三角形、直角三角形、钝角三角形。(3)根据解决问题的探索方向进行分类。如:直线行程问题和环形行程问题,,可以看出来他们在解决问题的方法上有相似性。
为了使学生形成良好的知识结构,用分类归纳整理时,往往需要同时借助比较、对比、举例等方法来突出各个知识间的区别和联系,补缺查漏,消除错误的知识印象。为了更加形象直观,也往往借助表格、图表等表示,如“韦恩图”就是个很好的工具。
另外,在运用分类思想整理归纳知识时,教师应引导学生自主构建知识网络。
3、 用分类思想解决问题。
利用分类思想解题是小学数学中一个重要且有效的解题方法。它的关键在于正确分类,做到既不重复又不遗漏,并能有效纠正学生的无序性甚至盲目拼凑的毛病,培养学生慎密的思维。
一、小学数学分类思想的意义
分类能力的发展反映了学生思维发展,特别是概括能力的发展水平。它既是学生逻辑思维能力发展的重要方面,又对促进学生逻辑思维能力的发展具有重要作用。
1、为数学抽象提供必要的基础。
分类需要对客观事物进行分析、比较,并抽象概括出事物的一般特点与本质属性。具体来说,儿童需先具体地判断对象的相同与不同之处,将某些对象看成同类或将一些东西看成同类(归类),即主要集中于对象的某个(些)特征,并认为是这些事物的共性所在,而对其他一些属性暂不考虑。也就是说分类思想的一个重要作用就是为相应的数学抽象提供了必要的基础。
2、为深入认识指明可能的途径。
如果说归类主要突出了事物的共同点,那么,不同类别的分类的作用就是为如何逐步深入地去开展认识指明了可能的途径,从这一角度我们可以重新来理解对三角形进行分类的意义,即为什么将三角形区分为直角三角形和非直角三角形(锐角和钝角三角形)、等腰三角形和非等腰三角形。因为这就为我们按照由特殊到一般地深入研究三角形提供了可能的途径。
3、为达到高级思维奠定基础。
加涅的智慧技能的学习过程和条件的层级关系是:辨别→(以辨别为条件)具体概念→(以具体性概念为条件)概念→(以定义性概念为条件)规则→(以规则为条件)高级规则,由于分类活动往往涉及到辨别,因此学习往往可以从分类开始,然后在基础上抽象为具体概念和定义性概念,最后为形成规则和高级规则奠定思维基础。
4、形成完善合理的知识结构。
分类往往是为了建立一定的序,因此知识积累到一定程度,运用分类思想能够帮助学生有条理、有顺序,并且不重复、不遗漏地归纳整理知识,形成完善合理的知识网络图。学习心理学的研究表明,良好的知识结构对于提取知识和解决问题是十分重要的。
5、发展儿童的组织策略。
组织策略即根据知识经验之间的内在关系,对学习材料进行系统、有序的分类、整理与概括,使之结构合理化。应用组织策略可以对学习材料进行深入的加工,进而促进对所学内容的理解与记忆。可见学会分类是发展组织策略的重要前提。研究表明,小学中低段儿童虽然不能自发地产生和运用组织策略,却能通过一段策略训练后学会使用组织策略。通过数学学习渗透分类思想后,可以发展儿童的组织策略,并迁移到其他学科的学习中去。
二、小学数学分类思想的教学策略
分类思想贯穿整个小学数学阶段,教师要挖掘教材中隐含的分类思想,向学生渗透分类思想。例如,教材在一年级通常安排将生活中的事物进行分类,体会按不同标准分类,结果不同;认识物体时,将长方体、正方体、圆柱和球进行分类……教师在教学时可以采取以下策略:
1、用分类活动引入新知识。
从学习心理学角度来看,在低年段往往通过设置具体的分类活动,使学生通过概念形成,达到不严格的具体性概念阶段。如在“认识三角形和四边形”时,可以出示点子图,根据图形是否为封闭图形分为封闭和不封闭图形;在封闭图形中,根据图形有几条线段围成的,分为三角形、四边形、五边形三类。
到了中高年段,则可以适时地根据学生的思维能力来逐渐地通过概念同化形成定义性概念,从而促进学生的抽象思维发展水平。如在引入平行线的概念时,不少是通过日常生活中的具体事例介绍,再经抽象概括形成“平行线”的概念。因此,可以通过让学生将同一平面内两条线段的关系进行分类,得到有交点和没有交点的两种情况,从而认识同一平面内的两条直线只有有交点和没有交点的两种位置关系,这就为通过概念同化来定义平行线做好了充分的铺垫。
2、用分类思想归纳整理知识。
当知识积累到一定程度往往需要用分类来归纳所学的知识,到了中高年级尤其如此,因此需要学生掌握合理的分类方法,满足互斥、无遗漏、最简便的原则,以形成完善合理的知识网络。
在小学阶段,学生需要掌握的内容,根据数学分类的方法常有以下几种:(1)根据数量特征和数量关系进行分类。如整数、小数、分数的分类,运算法则的分类,等等。(2)根据图形的特征或相互间的关系进行分类。如三角形按角分类,有锐角三角形、直角三角形、钝角三角形。(3)根据解决问题的探索方向进行分类。如:直线行程问题和环形行程问题,,可以看出来他们在解决问题的方法上有相似性。
为了使学生形成良好的知识结构,用分类归纳整理时,往往需要同时借助比较、对比、举例等方法来突出各个知识间的区别和联系,补缺查漏,消除错误的知识印象。为了更加形象直观,也往往借助表格、图表等表示,如“韦恩图”就是个很好的工具。
另外,在运用分类思想整理归纳知识时,教师应引导学生自主构建知识网络。
3、 用分类思想解决问题。
利用分类思想解题是小学数学中一个重要且有效的解题方法。它的关键在于正确分类,做到既不重复又不遗漏,并能有效纠正学生的无序性甚至盲目拼凑的毛病,培养学生慎密的思维。