论文部分内容阅读
在高空高速条件下,GPS信号失锁致使常规的卡尔曼滤波器发散,从而导致组合导航系统精度严重下降。以BP神经网络辅助技术手段对GPS/INS组合导航滤波算法实施精度补偿,即在GPS信号锁定时,对神经网络进行实时在线训练,而当在GPS信号失锁时,利用之前训练好的神经网络进行组合导航滤波,以解决精度严重下降问题。算法采用多神经网络并行结构,以减少神经网络在训练过程中的交叉耦合,提高训练速度。通过MATLAB仿真,验证了算法的可靠性与可行性,并证明其在GPS信号丢失时,精度较纯惯性导航系统有较大提高。