论文部分内容阅读
在商用0.35μm互补金属氧化物半导体工艺上制备了两种栅氧化层厚度(t_(ox))的条形栅、环形栅和半环形栅N沟道金属氧化物半导体(n-channel metal oxide semiconductor,简记为NMOS)晶体管,并进行了2000 Gy(Si)的总剂量辐射效应实验.实验结果显示,栅氧厚度对阈值电压漂移的影响大于栅氧厚度的3次方.对于t_(ox)为11 nm的低压NMOS晶体管,通过环形栅或半环形栅的加固方式能将其抗总剂量辐射能力从300 Gy(Si)提高到2000 Gy(Si)以上;而对于t_(ox)为26 nm的高压NMOS晶体管,通过环栅或半环栅的加固方式,则只能在低于1000 Gy(Si)的总剂量下,一定程度地抑制截止漏电流的增加.作为两种不同的版图加固方式,环形栅和半环形栅对同一t_(ox)的NMOS器件加固效果类似,环形栅的加固效果略优于半环形栅.对于上述实验结果,进行了理论分析并阐释了产生这些现象的原因.
Two types of gate oxide gate oxide (t_ (ox)), a ring gate and a half-ring gate n-channel metal oxide semiconductor (n-channel metal oxide semiconductor) , Abbreviated as NMOS) transistor, and a total dose radiation effect experiment of 2000 Gy (Si) was carried out.The experimental results show that the influence of gate oxide thickness on the threshold voltage shift is greater than the third power of gate oxide thickness, For 11 nm low-voltage NMOS transistors, the total radiation dose resistance can be enhanced from 300 Gy (Si) to over 2000 Gy (Si) by ring grid or semi-ring grid reinforcement, while for 26 ox Of high-voltage NMOS transistors, with the addition of a ring-gate or a half-ring gate, can only partially suppress the increase of the off-leakage current at a total dose of less than 1000 Gy.As two different layout enhancements , The annular grid and the semi-annular grid reinforce the effect of the same ox ox NMOS device, the annular grid is slightly better than the semi-annular grid.For the above experimental results, the theoretical analysis and the reasons for these phenomena are explained.